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An effective cloud computing environment requires both good performance and high efficiency of computing
resources. Through extensive experiments using a representative n-tier benchmark application (Rice Univer-
sity Bulletin Board System (RUBBo0S)), we show that the soft resource allocation (e.g., thread pool size and
database connection pool size) in component servers has a significant impact on the overall system perfor-
mance, especially at high system utilization scenarios. Concretely, the same software resource allocation can
be a good setting in one hardware configuration and then becomes an either under- or over-allocation in
a slightly different hardware configuration, causing a significant performance drop. We have also observed
some interesting phenomena that were caused by the non-trivial dependencies between the soft resources of
servers in different tiers. For instance, the thread pool size in an Apache web server can limit the total num-
ber of concurrent requests to the downstream servers, which surprisingly decreases the Central Processing
Unit (CPU) utilization of the Clustered Java Database Connectivity (C-JDBC) clustering middleware as the
workload increases. To provide a globally optimal (or near-optimal) soft resource allocation of each tier in
the system, we propose a practical iterative solution approach by combining a soft resource aware queuing
network model and the fine-grained measurement data of every component server. Our results show that to
truly scale complex distributed systems such as n-tier web applications with expected performance in the
cloud, we need to carefully manage soft resource allocation in the system.
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1 INTRODUCTION

An important advantage of cloud computing environment is the scalability: an application can
scale the underlying computing resources (e.g., number of virtual machines) to always meet the
demand of the fluctuation workload for both good performance and high resource efficiency [13,
39]. For long-term cloud users, scalability is especially important because the low operational cost
brought by efficient resource utilization can justify the savings of avoiding building a dedicated
cluster. For cloud vendors, scalability is also very important because they can save infrastructure
cost by using less amount of computing resources and power through efficient resource utilization.
So scalability and the associate efficient resource utilization are important requirements for shared
cloud computing environment.

A key challenge of achieving efficient resource utilization through scalability is the intelligent
mapping of cloud resources to the real-time resource demands of running applications. This is
because typical cloud applications such as e-commerce usually have large fluctuating and some-
times unpredictable workload (e.g., peak load 10 times higher than average) [9]. In addition, these
applications may have strict quality of service (QoS) requirements such as bounded response time.
To achieve such an intelligent mapping, significant previous work has been done in hardware re-
source scaling, for example, scaling hardware resources such as virtual machines or CPU cores
based on offline configuration plans [36] or pre-defined online adaptation policies (e.g., CPU uti-
lization larger than 80%) [20, 23, 27, 43].

In this article, we show that an intelligent mapping of cloud resources to real-time resource de-
mands of n-tier applications needs to take both hardware and software resources into account.
This is because of the complex dependencies between hardware and software resources (e.g.,
thread pool, connection pool, which we refer to as soft resources in this article) from each tier
of the system. For example, the number of threads in an upstream tier of an n-tier system can
control the level of concurrent requests flowing into downstream tiers, which may lead to either
under-utilization or over-utilization of the critical hardware resource in the system. To study the
impact of soft resource allocation on n-tier application performance, we developed tools to con-
duct fine-grained monitoring of both hardware (CPU, memory, I/O) and soft resources (thread/DB
connection pool) of each tier of the system. Then, we analyze the relationship between applica-
tion performance metrics (e.g., throughput, response time) and the fine-grained measurement of
hardware and soft resource usage by varying the soft resource allocation in each tier of the system.

The first contribution is the quantitative evaluation of the impact of soft resource allocation on
the performance of n-tier applications with different hardware configurations. Using the Rice Uni-
versity Bulletin Board System (RUBBoS) benchmark [44], we show that a sub-optimal soft resource
allocation (e.g., thread/DB connection pool) can easily degrade the performance of a 4-tier system
from 31% to 110%, depending on the Service Level Agreement (SLA) specifications (see Figure 2).
We also show that a set of near-optimal soft resource allocation for one hardware configuration
can become a very bad choice when the system scales out to a different size (hardware resource
scaling) (comparing Figures 2 and 3).

The second contribution is the sensitivity analysis of two policies of soft resource allocation:
either conservative or liberal allocation leads to inferior performance. We show that a conservative
soft resource allocation (e.g., small thread pool size) may lead to under-utilization of the critical
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hardware resource because of not enough workload concurrency in the system. On the other hand,
a liberal allocation of soft resources (e.g., large Database (DB) connection pool size) may degrade
the efficiency of the critical hardware resource in the system because of the increased overhead in
CPU and memory. For example, our experiments show that allocating a few hundreds of threads
in a Tomcat server can cause frequent Java garbage collection activities that waste the critical CPU
resource of the bottleneck server up to 9%.

The third contribution is a practical solution that recommends a near-optimal soft resource al-
location for each tier of an n-tier system. Our solution combines a soft resource-aware queuing
network model and fine-grained measurement data of each tier in the system. The model ab-
stracts the request processing in an n-tier system composed of typical thread-based servers and
characterizes the relationship of proper allocation of soft resources in each tier of the system. The
parameters of the model can be obtained through fine-grained measurement of the system, which
enables the prediction of optimal (or near-optimal) allocation of soft resources in each tier of the
system.

In general, our results suggest that soft resources should be treated as essential components
when scaling n-tier applications in the cloud. This is due to the strong dependencies between
soft and hardware resources within each component server and among different servers in the
system [41]. For example, scaling out/in the servers of one tier not only affects the workload con-
currency in itself, but also affects the workload concurrency in both the upstream and downstream
tiers (see Section 3). In fact, complex systems like n-tier applications can be truly scalable only if
hardware and soft resources are treated as a whole.

The rest of the article is organized as follows. Section 2 demonstrates the impact of soft resource
allocation on n-tier application performance with different hardware configurations. Section 3
conducts a sensitivity analysis of two soft resource allocation policies: liberal and conservative
allocation. Section 4 describes our soft resource-aware queuing network model and a practical
algorithm for near-optimal soft resource allocation in the system. Section 5 summarizes the related
work and Section 6 concludes the article.

2 BACKGROUND AND MOTIVATION
2.1 Background Information

2.1.1  Soft Resources in n-Tier Systems. When conducting the performance evaluation of com-
puter systems, hardware resources (e.g., CPU, disk, memory, network) are usually well-defined
monitoring components for performance analysis and reasoning. We use soft resources to refer
the software components such as threads and Transmission Control Protocol (TCP) connections
that use hardware resources. For example, threads use CPU and memory, and TCP connections use
the network. We also expand the definition of soft resources to refer the software components that
use soft resources or synchronize the use of both soft and hardware resources. For example, a lock
is a soft resource that synchronizes the use of data structures and CPU. In general, the function of
soft resources is to facilitate the sharing of hardware resources. For example, threads facilitate the
sharing of the CPU resources through concurrency and parallelism. As a result, soft resources are
indispensable components of the critical job execution path in the system.

More importantly, soft resources create dependencies among components in the system because
of the classic synchronous Remote Procedure Call (RPC) style inter-server communication. For
example, a request arrives in an Apache server, which dispatches the request to the downstream
application server such as Tomcat, which sends queries to a downstream database server such
as MySQL to fetch persistent state of the system. Soft resources such as processing threads in an
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Fig. 1. Experimental setup of the VMware ESXi cluster.

upstream server will not be released until a downstream server finishes all the processing, creating
non-trivial dependencies in the long invocation chain.

2.1.2  Experimental Environment. We use RUBBoS, a representative n-tier application bench-
mark to conduct our experiments in our VMware vSphere cluster. RUBBoS benchmark application
is modeled after the famous tech news website Slashdot [2]. It can be configured as 3-tier (web
server, application server, and database server) or 4-tier (add Cluster Java Database Connectivity
(C-JDBC) database clustering middleware [17]). Figure 1 shows the software stack, hardware spec-
ification, and a sample configuration that we have used in our experiments. The RUBBoS workload
consists of 24 web transactions such as ViewStory and StoryOf TheDay. The workload generator
of RUBBoS simulates a certain number of users sending real HTTP requests to interact with the
benchmark application; each user navigates between different web transactions by following a
Markov chain model abstracted from the trace of real user behaviors [16]. For example, the av-
erage think time between every two consecutive web transactions follows a normal distribution
with 7 seconds as its mean. Such a user behavior model has been widely used by other typical
n-tier benchmark applications such as Rice University Biding System (RUBiS) [45], Transaction
Performance Council benchmark W (TPC-W), and CloudStone [48].

We ran our experiments in our VMware vSphere cluster. We use #Web/#App/#CM [#DB to rep-
resent the hardware topology of a 4-tier system, which means the number of web servers, ap-
plication servers, database clustering middleware, and database servers. Each server (including
Apache, Tomcat, C-J]DBC, and MySQL) is running in a VM deployed on a dedicated physical ma-
chine (the specification of each machine is similar to the EC2 g2 dedicated host [7]), in this case,
we are able to eliminate complicated factors like VM interference and focus on the study of the
impact of soft resource allocation on the n-tier system performance. For example, in our 1/4/1/4
configuration case, the 4-tier system uses 10 VMs, each of which is deployed on a dedicated Dell
Power Edge R430 as shown in Figure 1(b). Except for database servers, every other server has a
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thread pool to handle requests from the upstream tier and a connection pool to communicate with
the downstream tier. For each hardware topology, we choose three representative soft resources
for our evaluation, which we denote as #Wipreqds-#A threads-#ADpBconn, meaning the thread pool size
in a web server, the thread pool size in an application server, and the DB connection pool size in
an application server. So for a hardware configuration like 1/2/1/2 (Figure 1(c)), the associate soft
resource allocation can be 400-150-60, which means 400 Apache threads, 150 Tomcat threads, and
60 Tomcat DB connections. Since there are two Tomcat servers, the total number of threads and
DB connections doubles in the application server tier. Other soft resource allocations are fixed to
limit the exponential experiment space.

2.2 SLA-based Performance Requirements

Web applications such as e-commerce are sensitive to response time variation. Amazon reported
that every 100ms increase in page load is positively correlated with 1% decrease in sales [29].
Google requires all the queries to return within 500ms [19]. Thus, only those requests returning
within certain response time limits can generate a positive impact on service providers’ business.
In a cloud computing environment, SLA are typically used to specify desired response time, usually
in one or two seconds, depending on the sensitivities of the target application for response time.

Our previous research shows a general SLA model that evaluates the impact of different response
time range on a target service provider’s revenue [37]. In this article, we adopt a simplified SLA
model to integrate throughput and response time together for system performance evaluation. In
our simplified SLA model, we use a simple response time threshold. We only consider the requests
with response time lower than the threshold, which satisfy our SLA and count as goodput. Requests
with response time above the threshold are counted as badput. Goodput and badput put together
equal the classic definition of throughput. By considering both goodput and badput, we can refine
our traditional throughput model by taking user-perceived response time into account, leading to
a more realistic system performance analysis.

2.3 Performance Decrease with Simplified SLA Model

In this section, we use concrete measurements to show the significance of soft resource allocation
on n-tier application performance by applying our simplified SLA model. The goal is to illustrate
the importance of the problem; a more detailed explanation is in Section 3.

2.3.1 Impact of Under-Allocation. Figure 2 shows the goodput comparison between two soft
resource allocations 400-100-100 and 400-8-20 under the same hardware topology 1/2/1/2. 400-
100-100 is based on rule-of-thumb practice from industry while 400-8-20 is a more conservative
configuration. We choose the workload range from 10,000 to 17,000 because it well captures the
keen of system goodput as workload increases. The three subfigures show that the goodput of the
400-8-20 case starts to degrade much earlier than the 400-100-100 case, indicating the significant
impact of soft resource allocation on n-tier application performance.

Readers may immediately question the choice of the conservative 400-8-20 allocation, since it is
“obviously” too low. However, as we will see in Section 2.3.2, the conservative allocation 400-8-20
will significantly outperform the original rule-of-thumb allocation 400-100-100 once the system
scales from 1/2/1/2 to 1/4/1/4, suggesting that a good soft resource allocation may not always be
good as the system scales to a different size.

Figure 2 also shows that the impact of soft resource allocation on system goodput is sensitive to
the response time threshold. For example, at workload 14,500, we show the goodput gap between
the 400-100-100 case and 400-8-20 increases from 31% to 110% when the target response time
threshold decreases from 3s to 500ms as shown in Figure 2(a)—(c). We note that we choose the
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Fig. 3. Performance degradation of the previous reasonable allocation 400-100-100 after the system hardware
configuration scales from 1/2/1/2 with 1/4/1/4.

allocation 400-100-100 as the baseline because it is considered as a good choice by practitioners
from industry. Such results indicate that even if the overall throughput may be the same, the
goodput can be very different, depending on the SLA specification.

2.3.2  Impact of Over-Allocation. Figure 3 shows the performance comparison of the same soft
resource allocations as in Section 2.3.1 after we scale the underlying hardware configuration from
1/2/1/2 to 1/4/1/4. As we can see, the previously inferior allocation 400-8-20 now outperforms
significantly the “rule-of-thumb” configuration 400-100-100. As we decrease the response time
threshold from 3s to 500ms, the goodput gap between these two cases becomes wider. The main
reason is that of the unintentional over-allocation of soft resources after system scales out, causing
significant overhead to the critical resource in the downstream tiers. More details are in Section 3.2.

Overall, SLA models connect economic goals with technical performance measurements, en-
abling a more realistic view of the impact of soft resource allocations on the service providers’ busi-
ness. For the rest of the article, we will use 3 seconds as response time threshold for goodput calcu-
lation of different combinations of soft resource allocation and hardware resource configuration.

In the following section, we will explain the reasons for performance difference under different
combinations of soft resource allocation and hardware configuration we have seen so far.

3 EVALUATION OF DIFFERENT SOFT RESOURCE ALLOCATION STRATEGIES

In this section, we conduct a sensitivity analysis of the impact of different soft resource allocation
strategies on n-tier application performance. We found some similarities and differences between
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Fig. 4. Performance degradation caused by Tomcat thread pool under-allocation. The hardware configura-
tion is 1/2/1/2.

hardware and soft resources. Section 3.1 shows a case of similarity that too low allocation of soft
resources in one tier under-utilizes the hardware resources of the tier, and becomes the bottleneck
of the system. Section 3.2 shows one case of difference; unlike hardware resources, too high alloca-
tion of soft resources degrades the system performance by causing the high overhead of the critical
hardware resource in the system. For example, high allocation of threads can cause more frequent
Java garbage collection activities in C-JDBC, causing high overhead of the C-JDBC CPU, which is
the critical hardware resource of the system. Section 3.3 shows a more interesting case of similar-
ity. Since soft resources create dependencies between different tiers, we show that a non-obvious
“low” allocation of soft resources in the frontmost tier (Apache) leads to the under-utilization of
the critical hardware resource in the downstream C-JDBC server.

3.1 Conservative Soft Resource Allocation

The first strategy of soft resource allocation is the straight-forward conservative allocation. The
purpose of conservative allocation is to avoid unnecessary overhead caused by abundant soft re-
sources. Since a virtual machine in a cloud computing platform typically has a small number of
CPU cores (e.g., 1 to 4), a conservative allocation (e.g., 10) of threads or connections should be able
to fully utilize the underlying hardware resources and avoid high concurrency overhead caused
by scheduling and context switches. Our results show that a reasonable conservative allocation of
soft resources is non-trivial to gain; the traditional wisdom of one or two threads per CPU core
does not apply to component servers in the context of n-tier systems.

We use Tomcat thread pool as an example to illustrate the impact of conservative soft resource
allocation. The hardware configuration is 1/2/1/2, where the Tomcat CPU is the critical hardware
resource of the system (we will show later). The number of threads in Apache and database connec-
tions in Tomcat are fixed at 400 and 200, respectively. The liberal allocation of these soft resources
are supposed to be abundant and never become the bottleneck in the system. We only change
Tomcat thread pool size, from 8 to 200. We note that each Tomcat VM only has one vCPU core,
thus eight threads in Tomcat should be sufficient to utilize the one vCPU core in Tomcat.

The system goodput under the increasing number of threads in Tomcat is shown in Figure 4(a).
This figure shows that the system goodput increases as the Tomcat threads increase from 8 to
20. For example, the goodput of the 400-20-200 case is 47% higher than that of the 400-8-200
case, indicating that eight threads in Tomcat are not enough to fully utilize the Tomcat CPU.
This hypothesis is confirmed in Figure 4(b), which shows the CPU utilization of the first Tomcat
server in the system. We omit the second Tomcat CPU utilization since it is similar as the first one
because of the well-functioned load-balancer in the upstream tier (the Apache web server). This
figure shows that eight threads in Tomcat are not able to saturate Tomcat CPU. For example, at
workload 16,000, the Tomcat CPU utilization is only 83% in the 400-8-200 case while the number
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Fig. 5. Performance degradation caused by Tomcat DB connection pool over-allocation. The hardware con-
figuration is 1/4/1/4.

is about 100% in the 400-20-200 case. This result indicates that all the threads in the small thread
pool allocation cases (i.e., the 8 and 12 threads case) are either processing the current requests
or busy waiting for the response from the downstream C-JDBC. As a result, there is no available
thread in Tomcat to process new requests, leading to the idle state of Tomcat CPU.

A detailed analysis of Tomcat thread pool utilization is shown in Figure 4(c). This figure shows
that the smaller the Tomcat thread pool is, the earlier the pool becomes saturated. For example,
thread pool size 8 saturates at the workload of 14,500 while the pool size 12 saturates at about
15,500, and pool size 20 saturates at about 16,000. On the other hand, the pool size 200 is far from
saturation (e.g., only 50% utilized) even under high workload range. This is because Tomcat CPU
becomes a bottleneck (see Figure 4(b)) before the thread pool is exhausted for request processing.
This result suggests that we need to monitor both soft and hardware resources to get a full picture
of performance analysis. Only monitoring hardware resources (e.g., using vmstat, sar, collectl) will
miss the real performance bottleneck as shown in the cases 400-8-200 and 400-12-200.

Figure 4(a) and 4(b) show another interesting phenomenon: the highest goodput achieved in the
200 threads case is significantly lower than that of the 20 threads case, suggesting that monolith-
ically increasing threads allocation could lead to sub-optimal system performance. This is due to
the non-trivial overhead caused by liberal soft resource allocation, as we will discuss in the next
section.

3.2 Liberal Soft Resource Allocation

The second soft resource allocation strategy we want to evaluate is the straight-forward liberal
allocation, with the purpose of fully utilizing the underlying hardware resources. This allocation
strategy shows the differences between soft and hardware resources. Unlike hardware resources,
soft resources such as threads and database connections consume other hardware resources even if
they are idle. Traditional wisdom assumes that the cost for maintaining soft resources is low (e.g.,
a small amount of memory or CPU cycles). So liberal allocation of soft resources is considered
reasonable as long as there is enough memory.

Our experimental results show that liberal allocation of soft resources can cause significant
overhead to the critical hardware resource when the system is approaching saturation. In this
set of experiments, we scale the hardware configuration from 1/2/1/2 in Section 3.1 to 1/4/1/4
in order to resolve the Tomcat bottleneck. We fix the number of threads in Apache and Tomcat
to be 400 and 200 to avoid any bottleneck of these soft resources. Then we change the database
connection pool size in Tomcat from 8 to 200 and see the impact of such an increase on system
performance. Figure 5(a) and (b) show the system performance degradation as we increase the
database connections in Tomcat. We note that each database connection in Tomcat corresponds to
one thread in C-JDBC, which in turn corresponds to one thread in the database server MySQL due

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 4, No. 2, Article 10. Publication date: June 2019.



Optimizing N-Tier Application Scalability in the Cloud 10:9

to the synchronous RPC-style communication between consecutive tiers. So a higher number of
database connections means a higher number of threads in C-JDBC and MySQL for query routing
and actual query processing.

Figure 5(a) shows the significant system goodput degradation as we increase the Tomcat data-
base connection pool size from 8 to 200. For example, at workload 19,500, the goodput of 400-200-8
is 34% higher than that of the 400-200-200 case. Figure 5(b) shows the average CPU utilization of
C-JDBC server at the same workload range. This figure shows the C-JDBC CPU utilization is above
95% at high workload range (after 19,000) under all the four configurations, suggesting that C-JDBC
CPU is the critical hardware resource in the system.

A further analysis of C-JDBC CPU utilization shows an opposite trend of system goodput
as the number of database connections increases in Tomcat. For example, at workload 19,500,
the C-JDBC CPU utilization of the 400-200-8 case is the lowest while the corresponding system
goodput is the highest (see Figure 5(a)), suggesting significant CPU overhead in C-JDBC as we
increase the database connections in Tomcat from 8 to 200. Remember each database connection
corresponds to one thread in C-JDBC, so the significant CPU overhead is caused by the high
number of threads in C-JDBC. The well-known multithreading overhead includes context
switches and scheduling. Here, we show another major source of high overhead for C-JDBC CPU:
the Java Virtual Machine (JVM) garbage collection as the number of threads increases in C-JDBC.

The JVM garbage collection affects system goodput in two ways. First, the JVM garbage collec-
tion consumes C-JDBC CPU, which is the critical hardware resource of the system. The CPU time
used for JVM garbage collection cannot be used for request processing, thus reducing the max-
imum achievable throughput of the system. Figure 5(c) compares the accumulated JVM garbage
collection time of the C-JDBC server during a 3-minute runtime experiment. This figure shows
that at workload 19,500, the total JVM garbage collection time is above 16 seconds (9% of total) in
the 400-200-200 case while about 4 seconds (2% of total) in the 400-200-8 case. Second, during the
JVM garbage collection period, the JVM will freeze for cleaning garbage (unreferenced objects)
in memory, which lengthens the waiting time of the queued requests and further decreases the
system goodput.

3.3 Buffering Effect of Soft Resources

In the previous two sections, we always keep the Apache thread pool size to be 400. Considering
that the Apache VM only has one vCPU core, 400 threads appear to be more than enough. In this
section, we show that allocating a high number of soft resources in the front-most tier (Apache
in this case) of the system is important to achieve good performance. Unlike the significant over-
head caused by the over-allocation of soft resources as introduced in Section 3.2, liberal allocation
of soft resources in the front-most tier (e.g., Apache server) functions as a buffer for clients’ re-
quests, stabilizing the requests flowing to the downstream tiers and improving the overall system
performance.

The experiments here still use the 1/4/1/4 hardware configuration, where the critical hardware
resource in the system is C-JDBC CPU as shown in the previous section. We keep a fixed number
of threads (6) and database connections (200) in each of the four Tomcat servers. Then, we vary the
thread pool size of the front-most Apache server from 30 to 400 and see its performance impact.
Figure 6(a) shows that the system goodput keeps increasing as we increase the Apache thread
pool size from 30 to 400. For example, under workload 19,500, the 400 threads case outperforms
the 30 threads case by 53% in system goodput. Intuitively, readers may believe that the 30 threads
case is just a simple soft resource under-allocation case as we have seen in Section 3.1, where the
scarcity of soft resources becomes the system bottleneck, limiting the full utilization of the critical
hardware resource in the system.
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Fig. 6. Performance degradation caused by under-allocation of Apache threads. The hardware configuration
is 1/4/1/4.

We have observed two interesting phenomena that make the 30 threads case a special soft re-
source under-allocation case. First, it is not clear why 30 threads in Apache is the bottleneck since
the total number of threads in the Tomcat server tier is just 24 (four Tomcat servers and six threads
each). Given that soft resources control the concurrent requests flowing to the downstream tiers,
it should be the 24 threads in the Tomecat tier, not the 30 threads in Apache that limit the con-
current requests flowing to the downstream bottleneck server C-JDBC. Second, the utilization of
the C-J]DBC CPU (the critical hardware resource of the system) keeps decreasing as the workload
increases from 16,000 and 20,000 in the 30 threads case, which is counter-intuitive to our normal
understanding that higher workload should lead to higher hardware resource utilization before
saturation. For example, the CPU utilization of C-JDBC at workload 19,500 is about 10% lower
than that at workload 16,000.

Our detailed analysis of the thread status in Apache reveals that both the above interesting phe-
nomena are due to the small request buffer size (30 threads case) in the front-most tier of the sys-
tem. Figure 7 shows a 40-second runtime status of Apache threads in the 30 threads case at work-
load 16,000 and 19,500, respectively. We consider two periods of an Apache thread: Thread ctive
and Thread onnTomear- The former period means that the Apache thread receives a request from a
client but is not released to process the next request, meaning the thread is active (or occupied);
the latter period is a sub-period of the active period, which means the Apache thread just routes
the request to the downstream Tomcat but has not received the response from Tomcat.

The first phenomenon (30 threads is not enough) can be explained by counting the number of
Apache threads in Threadonntomear period in the 30-6-200 at workload 19,500. Figure 7(b) shows
that about 25 threads in the Apache thread pool are active; however, the actual number of threads
connecting to Tomcat is only 15 in average, less than the total number of threads (24) in the Tomcat
tier. Thus, it is the Apache tier, not the Tomcat tier that limits the concurrent requests flowing to
the downstream bottleneck server C-JDBC, causing the C-JDBC CPU under-utilization.

The second phenomenon (CPU utilization in CJDBC decreases as workload increases) can
be explained by comparing Figures 7(a) and (b), which shows that the number of threads in
Thread onnTomear Period at workload 19,500 is even lower than that at workload 16,000. For ex-
ample, the average number of Thread onnTomear 1S about 15 in the former case while 18 in the latter
case. Fewer worker threads interacting with Tomcat means a fewer number of concurrent requests
been pushed to the downstream tiers including C-JDBC, resulting in reduced the CPU utilization
of the C-JDBC server at workload 19,500.

Readers may wonder why Thread onntomear at workload 19,500 is lower than that at 16,000. Fig-
ures 7(c) and (d) show the average time that a worker thread in Thread ;e period (gray line) and
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Fig. 7. Analysis of performance degradation of the 30-6-200 case as workload increases from 16,000 to 19,500.
Comparing (a) and (b), although more Apache threads are busy at WL 19,500, the number of threads con-
necting to Tomcat is lower, limiting the number of concurrent requests flowing to downstream tiers. This is
because the percentage of time of Apache threads in connecting Tomcat Thread onnTomcat OVer total active
Thread gtive at WL 19,500 is significantly lower than that at WL 16,000 by comparing (c) and (d).

also in Thread onnTomcar period (red line) when the system is at 16,000 and 19,500, respectively. It
is clear that the thread time in Thread,c;iv. period at workload 19,500 is averagely higher than
that at workload 16,000, while the thread time in Thread onnTomcar period at the two workloads are
similar. In this case, the percentage of time that a worker thread in Apache interacting with the
Tomcat tier over the total active time (%’m) at workload 19,500 is less than that at work-
load 16,000. As a result, a lower number of Apache threads are connecting to Tomcat at workload
19,500. We note that the main contributor of the high thread time in Thread v period at workload
19,500 is that Apache waits for Finish flag (FIN) replies from clients that close their corresponding
TCP connection. We observed that at a high workload, this wait time becomes longer than that
at higher workload (higher workload means more congestion in the network), which delays the
release of the corresponding Apache worker thread.

The above two interesting phenomena do not happen in the 400-6-200 case because 400 threads
in Apache provide a large buffer that stabilizes the number of concurrent requests flowing to
downstream tiers. Figure 8 shows the Apache threads status in 400-6-200 at workload 19,500. While
in this case, the Apache threads still need to wait for FIN reply from clients, the number of Apache
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Fig. 8. # of Apache threads in connecting Tomcat among the total active Apache threads in the 400-6-200
case at workload 19,500. Four hundred threads in the Apache server enable a high number of Apache threads
in connecting Tomcat, allowing a high number of concurrent requests to downstream tiers.

threads connecting to the downstream Tomcat tier is much more than the concurrency limit in
the Tomcat tier (24). Thus, Apache can always push a stable amount of workload to downstream
tiers, saturating the critical hardware resource of the system—the CJDBC CPU (see Figure 6(b)).

4 DETERMINING SOFT RESOURCE ALLOCATIONS

So far, we evaluated the impact of two soft resource allocation strategies on n-tier system perfor-
mance. In this section, we first summarize the challenges and opportunities of optimal soft resource
allocations. We then introduce a model of n-tier systems with explicit soft resource allocations in
each tier. Based on the model, we design an empirical algorithm of choosing a “Goldilocks” soft
resource allocation for each hardware configuration, followed by experimental validation.

4.1 Challenges and Opportunities of Good Soft Resource Allocation

Our previous experimental results can be summarized as follows. Too low soft resource allocation
may under-utilize the critical hardware resource in the system (Sections 3.1 and 3.3); too high allo-
cation may cause high overhead on the critical system resource (Section 3.2). Thus, a key principle
of a good soft resource allocation is to maximize the utilization of the critical hardware resource
in the system while avoiding unnecessary overhead on it. However, searching for a globally good
soft resource allocation is challenging due to the following three reasons:

(1) The optimal soft resource allocation is highly related to the location of the critical hard-
ware resource in an n-tier system; however, the location may shift when the system scales
to a different size due to workload variation. For example, the critical hardware resource
in the 1/2/1/2 configuration is the Tomcat CPU (Section 3.1) while it is C-JDBC CPU in
1/4/1/4 (Section 3.2).

(2) The system performance (both throughput and response time) in general is not sensitive
to over- or under-allocation of soft resources until some critical hardware resource ap-
proaches saturation. The impact of a bad soft resource allocation may not be revealed
when the system is at low utilization.

(3) The state space for the allocation of each soft resource is usually very large (e.g., from one
to unlimited). The complexity increases exponentially to find good combinations for mul-
tiple soft resources. Brute-force search for optimal allocation of soft resources by running
experiments exhaustively is impractical.
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Fig. 10. Illustration of a sample request processing in a 4-tier application.

Although challenging, there are still opportunities to reduce the complexity of good soft
resource allocation given the characteristics of n-tier systems. Our previous analysis (Section 3.2
and 3.3) shows that the soft resource allocations in different tiers are correlated with each other.
So given a good allocation of soft resources in one tier, it may be possible to infer good soft
resource allocations in other tiers given such “hidden” correlation. For example, Figure 9 shows a
sample interaction between a Tomcat and a C-J]DBC server when they process an HTTP request.
The HTTP request arrives in Tomcat triggers two subsequent DB queries to the downstream
C-JDBC. The response time of the HTTP request in Tomcat is T, while ¢; and ¢; for the following
two queries to C-JDBC. Thus, a worker thread in Tomcat is busy during the entire period T while
the corresponding worker thread in C-JDBC is busy only during ¢; and t;. In this case, the Tomcat
server needs to obtain at least Ny * T/(t] + t,) threads in order to keep Ny threads busy in C-JDBC.

The above example only shows the relationship between processing threads in Tomcat and
CJDBC. Other important soft resources in the system such as database connections are not shown.
A more detailed picture of the request processing in a 4-tier application is shown in Figure 10. This
figure shows that when a processing thread in any server (except database) receives a request, it
pre-processes the request first and then fetches a connection to communicate with the downstream
tier. The boxes under each server show the busy time of a processing thread and the corresponding
connection for downstream communication. To achieve high performance of such a 4-tier system,
we need to choose a good allocation of soft resources in each tier in a coordinated manner.

In the following section, we generalize the relationship of soft resources between different tiers
in an n-tier system through an analytical model.
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Fig. 11. A simple model of n-tier applications with soft resources. Except the last tier (database tier), every
server has a thread pool to process incoming requests and a connection pool to communicate with the
consecutive downstream tier.

Table 1. Descriptions of Parameters in Our Model

Symbol Description

N Number of tiers

ThreadPool;  Thread pool size in tier i

ConnPool; Connection pool size in tier i

TP; Average throughput of tier i (1 < i < N)

RT; Average response time of tier i

RTfOom Average connection busy time in tier i

Qi Average queued requests of tier i

Vij Request visit ratio between tier i and tier j

RT:{I tio Average response time ratio between tier i and tier j

4.2 Soft Resource Aware Modeling of n-Tier Systems

Consider that a web application with n tiers is denoted by Ti,...,T, as shown in Figure 11.
For simplicity, we assume each tier only has one server." We only consider the soft resources
that are responsible to communicate with other tiers. Concretely, each server has a thread
pool to receive/process the incoming requests and a connection pool to communicate with the
downstream tier. The size of thread pool and connection pool in tier T; is ThreadPool; and
ConnPool;. We omit other potential soft resources inside a server since they are implementation
specific. Table 1 shows the description of all the parameters in our model.

Based on the Little’s Law and Forced Flow Law, we can get the following equations for each
tier:

Qi =TP; = RT; (1)

TP; =TP; xVyj, (2)
where Q;, TP;, and RT; are the number of queued requests, the average throughput, and the average
response time in tier T;. V;; is the visit ratio between the T; and T;.

Combining Equations (1) and (2), we have the following:
TP; RT;
R T

RT;

=Qi*Vji*R—TJi ®3)

IMultiple servers in one tier can be viewed as one big server with all the soft resources of the same type added together.
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Let RTY

ratio
equation:

denote the ratio between RT; and RTj, the above equation can turn into the following

Qj = Qi * Vi * RT).) 4)
Equation (4) shows that in an n-tier system, once we determine the number of queued requests
in tier T;, we are able to infer the number of queued requests in any other tier T;, given the visit
ratio Vj; and response time ratio RTrJ;ti o
Both V}; and RTfai”. , can be measured in the runtime based on each server’s processing log, which
usually records the start time and the response time of each processed request. For example, the
visit ratio V}; is approximated as the ratio of the number of requests between tier T; and T;.
Assuming that each queued request in a server requires a dedicated thread, Equation (4) can be
transformed to:

We know that Vj; depends on the workload characteristics.

ThreadPool; = ThreadPool; * Vj; * RTrjaitio (5)

Other than the thread pool size, the connection pool size in tier T; can also be derived from
Equation (3). In this case, we need to record the timestamps when a connection is fetched by a
worker thread and when the same connection is released back to the connection pool. We denote
the time gap as the connection busy time RT°"". By replacing RT; with RT°"" in Equation (3),
we can get the following:

conn
R,

ConnPool; = Q; * Vj; * RT,

RTCOonn
J
RT;

= ThreadPool; * Vj; * (6)

Combining Equations (5) and (6), we are able to determine the relationship between thread pool
size and connection pool size in different tiers, given the proper measurement of request visit ratio
and response time of each tier.

We note that the above general soft resource aware model does not make any assumptions on
the implementation of the benchmark application as long as the application uses thread-based
servers to process business logic and connection pools for inter-tier communication. In fact, the
model can be applied to any multi-stage execution pipelined systems with synchronous/blocking
remote function invocation. Concretely, the parameters of the general model can be derived from
detailed measurements from any specific n-tier benchmark applications (e.g., RUBBoS, RUBIS [45],
CloudStone [48]). This general model characterizes the relationship of appropriate soft resource
allocations between any two tiers in an arbitrary n-tier system, providing a solid foundation for
our soft resource allocation algorithm to derive the optimal soft resource allocation in each tier of
the target system, which is the topic of the following section.

4.3 Soft Resource Allocation Algorithm

The model described in the previous section only quantifies the relationship of soft resource allo-
cations in different tiers; however, how to determine the “optimal” soft resource allocation in each
tier is still undetermined. In this section, we describe a soft resource allocation algorithm based on
the previous model. Our algorithm is based on the following three assumptions:

(1) Only a single critical hardware resource is in the system.

(2) When the system is saturated, our monitoring tools are able to identify the critical hard-
ware resource (e.g., C-JDBC CPU).

(3) Response time of every request is logged in every component server.
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The first assumption is to avoid complex multi-bottleneck scenarios. In a multi-bottleneck sce-
nario, multiple hardware resources may saturate in a fast alternating pattern (e.g., millisecond lifes-
pan) due to the inter-resource dependencies [38, 55]. In such a case, the average utilization of each
involved hardware resource can be far from saturation (e.g., 60%) while the system already achieves
the maximum throughput. Thus, the key challenge in a multi-bottleneck scenario is to identify the
involved critical hardware resources that participate in the fast alternating pattern. However, nor-
mal monitoring tools with coarse monitoring granularity (e.g., seconds or minutes) may fail to
detect any hardware resources that present transient saturation. Designing low-overhead fine-
grained monitoring tools to detect transient resource saturation in an n-tier system is the key to
expend our solution to a multi-bottleneck scenario, which is beyond the scope of this article. The
latter two assumptions assume that we have proper monitoring tools (e.g., collectl and Log4j) to
record both the system and the application level events during experiments.

The algorithm to find a good soft resource allocation has the following three steps (pseudo-code
in Algorithm 1):

(1) Identify the critical hardware resource. This step identifies the hardware resource that
saturates first as the workload increases. Such a hardware resource is critical because it
limits the entire system throughput.

(2) Infer the “optimal” soft resource allocation of the server that uses the critical
hardware resource. This step is to find the just-right allocation inside the bottleneck
server to avoid either under- or over-utilization of the critical hardware resource in the
system.

(3) Infer a good allocation of other soft resources. This step allocates soft resources of the
tiers other than the bottleneck tier. We use the soft resource aware model (Equations (5)
and (6)) that we derived in Section 4.2 to infer the appropriate soft resource allocations in
other tiers based on detailed measurements and the soft resource allocation in the bottle-
neck tier.

Currently, the above three steps are implemented in an offline style during the system profiling
phase by exploiting our automated experimental infrastructure [25] (the overhead analysis is in
Section 4.5). In the following, we will explain each of the three steps in more detail.

4.3.1 Identifying the Critical Hardware Resource. This step is to identify the critical hardware
resource of the system by increasing the workload gradually until the system reaches the highest
throughput. Hy and Sy represent the initial hardware configuration and soft resource allocation, re-
spectively. Function RunExperiment (H, S, workload) runs an experiment with the given hardware/
software configuration at specific workload. During the experiment period, our monitoring infras-
tructure monitors all the hardware and soft resources and the saturated ones are recorded in Hy, and
Sp, respectively. We increase the workload one step each time until the system reaches the highest
throughput. At this moment, either some hardware or soft resource limits the continual increase
of the system throughput. If Hj, is not empty, this step of the algorithm successfully identifies the
critical hardware resource and returns. Otherwise, if Sy, is not empty, the system encounters the
soft resource bottleneck, causing the under-utilization of the critical hardware resource. In this
case, we double all the soft resource allocations and repeat the experiment.

4.3.2 Inferring an “Optimal” Allocation of Soft Resources in the Bottleneck Tier. This step in-
fers a good allocation of soft resources (e.g., threads) in the bottleneck tier that can saturate the
critical hardware resource without causing additional overhead. In a thread-based server, each job
requires one dedicated thread to process it; the optimal threads number should equal the minimum
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ALGORITHM 1: Pseudo-code for soft resource allocation
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procedure FindCriticalResource
workload = step, TPy = 0, TP ppayx = -1;
S = S(), H = H();
while TP, > TP do
TPmax = TP curr;
(Bps Bs, TP) = RunExperiment(H, S, workload);
if (By, # ¢) then
/ # critical hardware resource found * |
Sreserve = S5
return By;
else if (Bs # ¢) then
/ * soft resource bottleneck * |
workload = step, TP = 0, TP gy = -1;
S =2S;
else
workload = workload + step;

end
end

procedure InferMinConncurentjobs
workload = smallStep, i = 0, TPyrr = 0, TP gy = -1;
S = Sreserves
while TP, > TP 4y do
TPmax = TPcurr;
WL[i] = workload,
(RTT[i], TP[i], TPcyrr) = RunExperiment(H, S, workload);
workload = workload + smallStep;
i++;
end
/ = find the minimum workload » /
WLpin =i — 1;
minjJobs = RTT[WLin] * TP[WLminl;
criServer.threadpool = minjobs;
criServer.Connpool = minJobs;

procedure CalculateMinAllocation

for server in front tiers do

/ = apply soft resource allocation model * |
server.threadpool= minjobs * Vyisitratio = RT T ratio;
server.Connpool = minJobs * Vyisitratio * RT T ratio;
end

for server in end tiers do

server.threadpool= minjobs;

server.Connpool = minjobs;

end

concurrent jobs that saturate the critical hardware resource in the server. In this case, the critical

hardware resource will neither be under- nor over-utilized.
Applying Little’s law (see Equation (1)), we can infer the average number of jobs inside a server

based on the average server throughput and response time. Both the two metrics can be easily
obtained from the server’s log. Therefore, to find the minimum concurrent jobs (minJobs) that
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saturate the bottleneck server, we need to determine the minimum workload (WL,,;,,) that can just
achieve the highest system throughput. This can be achieved by gradually increasing the workload
until the system reaches the highest throughput. Line 31 of the pseudo-code shows that minJobs
can be calculated given the throughput and response time of the critical server at workload WL, ;p,.

4.3.3  Calculating a Good Allocation of Other Soft Resources. This step of the algorithm applies
Equations (5) and (6) to calculate appropriate soft resource allocations in other tiers based on the
“optimal” soft resource allocations in the critical tier (determined in the second step). We note
that the calculated soft resource allocations in other tiers are just the minimum that allows the
critical hardware resource in the bottleneck tier to be saturated by the concurrent jobs (minJjobs).
In practice, there are two optimization techniques to further improve the algorithm effectiveness.

First, to handle the naturally bursty workload from clients, the front-most tier (e.g., Apache
web server) should provide more soft resources than the minimum to act as a buffer that stabilizes
bursty workload to the downstream tiers (see Section 3.3). An appropriate value depends on the
burstiness level of the workload. Our experiments show that allocating 3 to 4 times of the calcu-
lated minimum threads in the front-most Apache is able to achieve a good buffering effect for the
default RUBBoS workload, the request rate of which follows a normal distribution with the mean
value related to the number of clients. We note that randomly allocating a high number of threads
(beyond 3 to 4 times) may again degrade the efficiency of the Apache server because threads will
consume resources such as the main memory and CPU cache even if they are idle, which may
cause side effects such as memory or cache thrashing.

Second, the soft resource allocations in the tiers behind the bottleneck tier (e.g., MySQL in
1/4/1/4) can directly assign the value of minJobs. This is because according to Equations (5) and (6),
the minimum soft resource allocation in these downstream tiers are definitely less than min Jobs.?
Since these downstream tiers are not the bottleneck, slightly over-allocation of soft resources does
not hurt the overall system performance while such optimization can speed up the soft resource
allocation process for the whole system.

4.4 Validation of the Algorithm

In this section, we apply our iterative algorithm to find the “optimal” (or near-optimal) soft resource
allocation under different hardware configurations and also validate the recommended allocation
through extensive experiments.

Table 2 summarizes the output of the three procedures of the algorithm for the two hardware
configurations that we have evaluated before: 1/2/1/2 and 1/4/1/4. The first procedure of the al-
gorithm reports that the critical hardware resource of the 1/2/1/2 configuration is Tomcat CPU
while C-JDBC CPU for the 1/4/1/4 configuration. The second procedure reports the average re-
sponse time and throughput for each individual server under the minimum saturation workload,
and infers the “optimal” allocation of soft resources in the bottleneck tier. In this procedure, we
turned on the logging function of each server in order to record the start time and response time
of each request, which is used to calculate the average response time and throughput of each
server. The third procedure calculates the minimum thread/conn pool size for other tiers based on
Equations (5) and (6).

4.4.1 Validation of 1/2/1/2 Case. Since the combination of soft resource allocation space is too
large in a 4-tier system, we validate the recommended allocation of each individual soft resource
one by one. Concretely, we vary the allocation of each individual soft resource and check whether

RTEONN

2Given that tier j is behind tier i, Figure 10 shows that both (Vj; * RT/! ) and (Vj; * Ij?iTi) are less than 1.

ratio
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Table 2. Algorithm Output for the Hardware Configuration 1/2/1/2 and 1/4/1/4

, 1/2/1/2 1/4/1/4

Hardware Configuration

Apache Tomcat CJDBC MySQL||Apache Tomcat CJDBC MySQL
Critical hardware resource CPU CPU
Saturation WL [# Users] 15400 19200
RT [s] 0.050 0.028 0.045 0.020 0.005
RTC "™ [5] 0.034 0.013 0.023  0.009  0.003
TP [Reqs/s] 2101 2101 2625 2625 8426
Visit ratio V 1 1 3.21 3.21 1 1 3.21 3.21
minJobs in the bottleneck tier 59 42
Size of total threads 105 60 60 60 118 52 42 42
Size of individual thread pool 105 30(x2) 60 30(x2)|| 118 13(x4) 42 11(x4)
Size of total connections 73 26 60 \ 60 32 17 \
Size of individual connection pool 73 13 (x2) 30 \ 60 8 (x4) 17 \

The results show that as the hardware configuration changes, the “optimal” allocation of soft resources in each tier also
changes.

the algorithm recommended allocation is able to achieve the best performance under the same
workload. When validating one specific soft resource, we carefully choose the allocation for the
other soft resources in order to avoid being the main parameter affecting the system performance.
More comprehensive evaluation such as exploring larger allocation space or varying the allocation
of multiple soft resources simultaneously will be our future work.

Figure 12(a)-(c) shows the validation results for three individual soft resources: the Tomcat
threads, Tomcat database connections, and Apache threads. The 4-tier system is always at a high
workload 16,000 to make sure that the critical hardware resource (Tomcat CPU) can be fully utilized
given that soft resources are sufficient. Figure 12(a) and (b) show that the recommended allocation
given by our algorithm indeed outperforms all the other allocation cases. For example, Figure 12(a)
shows the goodput comparison when we increase the thread pool size in Tomcat (the bottleneck
tier) from 4 to 100. The workload is 16,000, which is able to saturate the system when there is no
soft resource bottleneck. This figure shows that the optimal size of one Tomcat thread pool is 30,
matching the output given by our algorithm as shown in Table 2. Figure 12(c) shows that the system
goodput achieves the highest when Apache threads reach 300, three times the recommended value
(105). This is because we need to allocate an adequatly high number of threads in the front-most
Apache to achieve a good buffering effect and provide stable concurrent requests to downstream
tiers, as long as the Apache web server does not become the system bottleneck.

We also demonstrate the varying impact of soft resource allocations on n-tier application per-
formance when the response time threshold (the SLA objective) changes in Figure 13. For example,
the system with the recommended threads pool size in Tomcat (30) outperforms 60% in goodput
than the over-allocation case (150) in Figure 12(a); such a performance difference is enlarged to
214% when the response time threshold changes to 500 milliseconds in Figure 13(a). Such a result
shows that while the recommended soft resource allocation still outperforms the other testing al-
location cases, the performance gap tends to be wider when the target response time threshold is
small (e.g., 500 milliseconds in Figure 13) on the same hardware configuration.

4.4.2  Validation of 1/4/1/4 Case. The critical hardware resource under 1/4/1/4 hardware config-
uration is C-JDBC CPU, however, we can not directly validate the recommended threads number
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Fig. 12. Validation of each individual soft resource allocation recommended by our algorithm for the hard-
ware configuration 1/2/1/2 (the first row subfigures) and 1/4/1/4 (the second row subfigures) with a 3-second
target response time threshold. Each subfigure validates one parameter; the other two parameters are cho-
sen to be abundant in order to avoid being the main parameter limiting the system performance. (a), (b),
(d), and (e) show that the recommended allocation of the corresponding soft resource is able to achieve the
highest system goodput; either under-allocation or over-allocation leads to degraded system goodput (see
Section 3.1 and 3.2). In addition, (c) and (f) show that 3 to 4 times of the recommended allocation of threads
in Apache (the front-most tier) are needed to achieve a good buffering effect due to the natural burstiness
of n-tier application workload (see Section 3.3).

in C-JDBC because there is no explicit thread pool in the current C-JDBC server implementation. >
So, for 1/4/1/4, we also show the validation for Tomcat threads, Tomcat database connections, and
Apache threads as we did in Section 4.4.1. Figure 12(d) and (e) show that the recommended soft
resource allocations (13 threads and 8 database connections in each Tomcat) by our algorithm ac-
tually achieve the highest goodput comparing to other allocation cases. Figure 12(f) shows that,
compared to the 1/2/1/2 case, 400 Apache threads are needed to achieve a good buffering effect,
almost 4 times as the recommended value (116). This is because the 1/4/1/4 case under validation is
at a much higher workload (20,000) compared to the 1/2/1/2 case, thus larger buffer size is needed
in the front-most tier.

4.4.3 Global Optimal Allocation. Astute readers may question the wisdom of validating each
recommended allocation of soft resources (i.e., Apache threads, Tomcat threads, and database con-
nections) one by one as shown in Figure 12. What about the global optimal soft resource allocation?
In fact, Algorithm 1 already gives the answer. The principle of a global optimal soft resource alloca-
tion is to most efficiently utilize the critical (bottleneck) hardware resource in the system, neither

3A C-JDBC server launches a new request handling thread for each new database connection from the upstream Tomcat.
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Fig. 13. Validation results using a 500-millisecond target response time threshold. Compared to the 3-second
response time threshold case (Figure 12), this set of results show that smaller target response time threshold
(500-millisecond in this case) tends to lead to higher performance impact of the recommended soft resource
allocation (e.g., Figure 12(a) vs. 13(a)) on the same hardware configuration (either 1/2/1/2 or 1/4/1/4).

under- nor over-utilize it, in order to achieve the highest system goodput. In the 1/2/1/2 case, the
critical hardware resource is Tomcat CPU, while it is CJDBC CPU in the 1/4/1/4 case. The algo-
rithm recommended allocation in each tier as shown in Table 2 is the minimum that allows the
concurrent jobs to saturate the critical hardware resource in the system. Thus, controlling either
the Tomcat thread pool or the database connection pool is able to achieve the highest system good-
put. For example, Figure 12(a) and (b) show that either allocating 30 Tomcat threads or 13 database
connections allows the 1/2/1/2 system to achieve the highest goodput (about 2,200reqs/sec), as
long as the allocation of other soft resources is abundant. We note that the allocation of threads
in the front-most Apache is special since it also serves as a buffer to stabilize the bursty work-
load from clients; thus, more than the recommended minimum is needed to serve as an effective
buffer, as shown in Figure 12(c). The same analysis also applies to the 1/4/1/4 case as shown in
Figure 12(d)-(f).

On the other hand, allocating less than the algorithm-recommended minimum of any soft re-
source will lead to degraded system goodput. This is because such an under-allocation will prevent
the necessary number of concurrent jobs that saturate the critical hardware resource in the sys-
tem. Figure 14 validates this point for both 1/2/1/2 and 1/4/1/4. In both cases, we half the size of
the recommended value of each of the three parameters (Apache threads, Tomcat threads, and
DB connections) one by one. The achieved system goodput is significantly lower than that of the
algorithm-recommended global optimal case (the top purple line) under the high workload range
when the system is approaching saturation or slightly overloaded.
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Fig. 14. Validation of the global soft resource allocation recommended by our algorithm for the hardware
configuration 1/2/1/2 (the left) and 1/4/1/4 (the right). The soft resource allocation recommended by our
algorithm (the top purple line) achieves the highest system goodput under different hardware configurations.
For both (a) and (b), we only compare with the cases of under-allocation (half size of the recommended value)
of each parameter at a time. This is because the abundant allocation (more than the recommended value) of
any one of three parameters will still allow the system to achieve the highest system goodput, as shown in
Figure 12.

4.5 Discussion

Overhead analysis of soft resource allocation algorithm. Since our algorithm is implemented
in an offline style, the performance overhead of applying the algorithm to the runtime system is
minimum. Concretely, during the offline training phase, our proposed algorithm is able to quickly
generate a near-optimal soft resource allocation policy for each hardware configuration (e.g., 1/2/1,
1/2/1/2, 1/4/1/4) by exploiting our automated Elba [25] experimental infrastructure, which is able
to generate scripts to automate the system deployment/configuration, experiments execution, data
collection, data analysis, and visualization. For example, to generate a near-optimal soft resource
allocation for the 1/2/1/2 RUBBoS configuration in Table 2, the algorithm runs 10 workload steps to
identify the critical hardware resource, each of which runs about 10 minutes. So, in total, 100 min-
utes is needed to generate a near-optimal soft resource allocation for this specific hardware con-
figuration (1/2/1/2).

These offline-generated soft resource allocation policies will be adopted for online system re-
configuration during the system scaling phase in the cloud. Concretely, when the system scaling
out/in is triggered during runtime, the application scaling controller just needs to dynamically
change the soft resource allocation of the involved servers based on the offline-generated soft re-
source allocation policies. We note that these offline-generated soft resource allocation policies
need to be re-trained when the workload characteristic is detected to change significantly over
time (e.g., from CPU-intensive to I/O-intensive). Although web application workload is naturally
bursty (e.g., number of users), the workload characteristic (transaction mix) is relatively stable. So
we expect the regeneration of soft resource allocation policies would not happen frequently for
real production n-tier systems.

Soft resource allocation algorithm for other types of soft resources. Our definition of soft
resources in this article is to refer to the software components such as threads and TCP connec-
tions that use hardware resources or synchronize the use of both soft and hardware resources.
For example, a lock is one of the soft resources that synchronizes the use of data structures and
CPU. In general, the function of soft resources is to facilitate the sharing of the hardware resources
through concurrency. Regardless of the types of soft resources, the optimal soft resource allocation/
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configuration is to use the underlying hardware resources most efficiently with minimum over-
head. This is the key principle of the second and the third steps of our proposed soft resource
allocation algorithm described in Sections 4.3.2 and 4.3.3.

Multi-core scenario. The essential problem of soft resource allocation/configuration is how
to optimize the request processing concurrency (controlled by soft resource allocation) in each
server/tier of an n-tier system to most efficiently utilize the underlying hardware resources with
minimum overhead. Thus, the difference between VMs with single-core and multi-core relies on
the number of soft resources (e.g., server threads) needed to most efficiently utilize the capacity of
the CPU resources (assume CPU is the bottleneck resource). We note that a multi-core CPU may
not be able to be fully utilized by simply increasing the number of threads due to the inter-thread
dependency and synchronization issue, especially when the number of cores is large (e.g., more
than eight [14]), but that is beyond the scope of this article.

Dealing with asynchronous event-driven servers. We note that some recent web applications
started to use event-driven asynchronous component servers (e.g., Nginx [42] and Node.js [33]),
the performance of which are less affected by the request processing concurrency; however,
thread-based servers are still widely used in today’s production web systems and sometimes dif-
ficult to be replaced by their asynchronous counterparts (e.g., database servers) due to the com-
plexity of the asynchronous programming model. We believe our conclusions on soft resource
allocations and the general soft resources aware model are still important contributions for build-
ing truly scalable n-tier systems in the cloud.

5 RELATED WORK

In this section, we classify previous work on system performance optimization into four main
categories—server design, analytical models, feedback control, and experimental-based software
engineering approach.

Asynchronous event-driven server design has been explored for high performance servers [30,
46], with Nginx [42] and Node.js [33] as a few emerging asynchronous web servers. Some previous
work [10, 57] even advocates a hybrid design of combining both threads and events for high-
performance servers. Nevertheless, many mainstream Internet servers such as Apache and Tomcat
still adopt the classic thread-based architecture because of its simple and natural programming
style. Regardless of which design that an Internet server (either thread-based, asynchronous event-
driven, or the hybrid design server) adopts, soft resource allocation controls the request processing
concurrency and has a significant impact on server/system performance. While previous research
typically focuses on the performance impact of single soft resource allocation (e.g., threads) on a
single web server [10, 26, 46, 54], this article focuses on highly distributed n-tier applications with
inter-dependent servers.

Analytical models have been proposed for system performance prediction and the optimal re-
source allocation [1, 3, 8, 12, 15, 18, 21, 40, 52]. For example, Franks et al. [21] propose a layered
queuing network model that characterizes the dependencies of software and hardware resources
across nodes in a distributed system. Urganonkar et al. [52] propose a queue-based model to cap-
ture the performance characteristics of each tier and application idiosyncrasies. Bhimani et al. [12]
propose a performance approximation approach to model the computing performance of iterative
and multi-stage applications using the Stochastic Markov Model and Machine Learning Model.
These analytical models generally extend the classic queuing network model and are meant to
capture some key features that affect the target system performance such as the dynamic changes
of workload characteristics, concurrency bound, or server replicas. These models, although they
have been shown to work very well in some specific scenarios, may not apply to realistic n-tier
applications because of certain strict assumptions. For example, these models do not consider the
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practical factors such as non-linear multithreading overhead or JVM GC activities, which are very
related to soft resource allocation and can significantly degrade server efficiency as shown in this
article.

Feedback-control have been applied to adapt system resource provisioning based on run-time
workload variation [4, 11, 22-24, 28, 31, 32, 34, 51, 58]. The feedback signal is usually generated
based on certain resource utilization boundaries or a pre-defined SLA specification such as re-
sponse time threshold. Previous work mainly focuses on how (e.g., live migration [43]) and when
(e.g., pro- [22, 24] and re-active scaling [23]) to add or remove hardware resources such as virtual
machines/Docker containers to change the system capacity. For example, Amazon provides Ama-
zon Web Services (AWS) Auto Scaling [5] in its cloud platform, which adopts a re-active scaling
strategy to enable the dynamic scaling of virtual machines based on the average CPU utilization
measured by its monitoring tool—Amazon CloudWatch [6]. Gandhi et al. [22, 24] dynamically al-
locate system capacity (number of servers) by taking advantage of both pro- and re-active scaling
strategies based on an offline-trained workload forecasting model. Alsarhan et al. [4] use reinforce-
ment learning (RL) to derive scaling policies (number of VMs) that can adapt to system changes in
order to guarantee the QoS for all client classes. Nevertheless, how to re-adapt request processing
concurrency to match the hardware provisioning changes is usually neglected. As shown in this
article, request processing concurrency controlled by soft resources such as server threads and
connections have a significant impact on n-tier web application performance. Thus, when a scal-
ing action is triggered, reallocating soft resources is necessary to maximize the efficiency of the
underlying hardware resources.

Software performance engineering approaches for optimal system configuration (both hard-
ware and software) are closest to our study [35, 47, 49, 50, 53, 59, 60]. For example, Zheng et al. [59]
design an automation framework to generate configurations automatically for a cluster of servers
in a web system by using a parameter dependency graph derived from runtime measurement data.
Zhu et al. [60] propose an automated approach for optimal system configuration given the con-
ditions of limited computing resources and a fixed application workload. Tang et al. [50] present
Facebook’s holistic configuration management stack for managing applications’ dynamic runtime
configuration, for example, gating product rollouts, managing application-level traffic, and run-
ning A/B testing experiments. However, these previous approaches, in general, do not seriously
consider the non-trivial dependencies among soft and hardware resources provisioning.

6 CONCLUSIONS

In this article, we studied the impact of soft resource allocation on n-tier application performance.
We found that the system goodput (requests within SLA bound) is sensitive to soft resource
allocations at high concurrency levels; given a good soft resource allocation in one hardware
configuration, it may become inappropriate (either under or over-allocation) when the hardware
configuration scales (Section 2.3). Concretely, we showed that too low allocation of Tomcat
threads (Section 3.1) or Apache threads (Section 3.3) degrades system goodput several tens of
percent by underutilizing the critical hardware resource in different manners. On the other
hand, over-allocation of Tomcat DB connections causes significant overhead on the downstream
C-JDBC CPU and also degrades system goodput several tens of percent (Section 3.2). We note
that we have conducted similar experiments on Emulab with much older hardware configuration
and software versions [56], and the same conclusion has been reached as in our new VMware
ESXi cluster environment, given all the hardware and software upgrades since 2011.

To achieve a good soft resource allocation, we provide a novel model of n-tier systems with soft
resources as explicit components, upon which we described a practical soft resource allocation
algorithm followed by extensive validation experiments (Section 4). More generally, to truly scale
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complex systems such as n-tier applications, soft resources have to be treated as first-class citizens
(analogous to hardware) during the system scaling management.
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