
The Impact of Event Processing Flow on
Asynchronous Server Efficiency

Shungeng Zhang , Student Member, IEEE, Qingyang Wang ,Member, IEEE,

Yasuhiko Kanemasa ,Member, IEEE, Huasong Shan , Student Member, IEEE,

and Liting Hu,Member, IEEE

Abstract—Asynchronous event-driven server architecture has been considered as a superior alternative to the thread-based

counterpart due to reduced multithreading overhead. In this paper, we conduct empirical research on the efficiency of asynchronous

Internet servers, showing that an asynchronous server may perform significantly worse than a thread-based one due to two design

deficiencies. The first one is the widely adopted one-event-one-handler event processing model in current asynchronous Internet

servers, which could generate frequent unnecessary context switches between event handlers, leading to significant CPU overhead of

the server. The second one is a write-spin problem (i.e., repeatedly making unnecessary I/O system calls) in asynchronous servers due

to some specific runtime workload and network conditions (e.g., large response size and non-trivial network latency). To address these

two design deficiencies, we present a hybrid solution by exploiting the merits of different asynchronous architectures so that the server

is able to adapt to dynamic runtime workload and network conditions in the cloud. Concretely, our hybrid solution applies a lightweight

runtime request checking and seeks for the most efficient path to process each request from clients. Our results show that the hybrid

solution can achieve from 10 to 90 percent higher throughput than all the other types of servers under the various realistic workload and

network conditions in the cloud.

Index Terms—Asynchronous, event-driven, thread-based, internet servers, efficiency

Ç

1 INTRODUCTION

MODERN Internet servers are expected to handle high
concurrency workload at high resource efficiency in

the cloud [1],[2]. To achieve this goal, many previous research
efforts [3], [4] have shown that the asynchronous event-driven
architecture could be a superior alternative to the traditional
thread-based design. An important reason is that an asyn-
chronous event-driven server can avoid the well-known
multithreading overhead, which usually occurs in the thread-
based counterpart when facing high concurrency workload.
Though conceptually simple, building high-performance
asynchronous event-driven servers is challenging because
of the obscured non-sequential control flow rooted in the
event-driven programmingmodel [4].

In this paper, we study some non-trivial design defic-
iencies of asynchronous event-driven servers that make
them less efficient than the thread-based counterparts when
facing high concurrency workload. Through our extensive

experiments, we show that constructing good performance
and high efficiency asynchronous event-driven servers
requires careful design of event processing flow and the
capability to adapt to dynamic runtime workload and net-
work conditions. For example, the conventional design
practice of one-event-one-handler event processing flow
may cause a significant performance loss of an asynchro-
nous server by generating frequent unnecessary intermedi-
ate events and context switches, which occur at the
transition of control flow between different event handlers.
Our further analysis also shows that some runtime work-
load and network conditions might result in frequent
redundant I/O system calls due to the non-blocking nature
of asynchronous function calls, causing significant CPU
overhead in an asynchronous server, but not in a thread-
based one.

The first contribution of the paper is an empirical study
illustrating the negative impact of the inefficient event proc-
essing flow on asynchronous server performance. Our study
is motivated by running a standard 3-tier application bench-
mark RUBBoS [5] (see Fig. 3), wherewe observed a significant
system throughput drop (28 percent) afterwemerely upgrade
the Tomcat application server in the system from a thread-
based version (Version 7) to its asynchronous event-driven
version (Version 8). Our analysis reveals that such an unex-
pected performance degradation stems from the poor design
of event processing flow of the asynchronous Tomcat server,
causing a significant high CPU overhead due to unnecessary
context switches.We further investigate many other represen-
tative asynchronous servers/middleware (see Table 1) and

� S. Zhang and Q. Wang are with the Division of Computer Science and
Engineering, Louisiana State University, Baton Rouge, LA 70803.
E-mail: {shungeng, qywang}@csc.lsu.edu.

� Y. Kanemasa is with Software Laboratory, FUJITSU LABORATORIES
LTD, Kawasaki 211-8588, Japan. E-mail: kanemasa@jp.fujitsu.com.

� H. Shan is with JD.com American Technologies Corporation, Mountain
View, CA 94043. E-mail: huasong.shan@jd.com.

� L. Hu is with Computing and Information Sciences, Florida International
University, Miami, FL 33199. E-mail: lhu@cs.fiu.edu.

Manuscript received 28 Oct. 2018; revised 16 Aug. 2019; accepted 20 Aug.
2019. Date of publication 5 Sept. 2019; date of current version 10 Jan. 2020.
(Corresponding author: Shungeng Zhang.)
Recommended for acceptance by D. Talia.
Digital Object Identifier no. 10.1109/TPDS.2019.2938500

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020 565

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-1219-2084
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-7006-9340
https://orcid.org/0000-0002-7006-9340
https://orcid.org/0000-0002-7006-9340
https://orcid.org/0000-0002-7006-9340
https://orcid.org/0000-0002-7006-9340
https://orcid.org/0000-0001-7268-8439
https://orcid.org/0000-0001-7268-8439
https://orcid.org/0000-0001-7268-8439
https://orcid.org/0000-0001-7268-8439
https://orcid.org/0000-0001-7268-8439
mailto:
mailto:
mailto:
mailto:

find that such a poor design of event processing flow widely
exists among Jetty [6], GlassFish [7], and MongoDB Java
asynchronous driver [8].

The second contribution is a sensitivity analysis of how
different runtime workload and network conditions impact
the efficiency of the event processing flow of asynchronous
servers. Concretely, we vary the server response size and net-
work latency based on realistic conditions in a typical cloud
environment and see their impact on the performance of
servers with different architectures. Our experimental results
show that an asynchronous server could encounter a severe
write-spin problem, in which the server makes a large
amount of unnecessary I/O system calls when sending a rela-
tively large size of server response (e.g., 100KB), thus wastes
the critical CPU resource up to 24 percent. Such a problem is
caused by the lack of coordination between the non-blocking
nature of asynchronous system calls in the application layer
and the TCP wait-ACK mechanism in the OS kernel. Our
experiments show that some network conditions (e.g., net-
work latency) could exaggerate the CPU overhead caused
by the write-spin problem, leading to a more severe perfor-
mance drop of the server.

The third contribution is a hybrid solution which exploits
the merits of different asynchronous event-driven architec-
tures in order to adapt to dynamic runtime workload
and network conditions. We first examined a widely-used
asynchronous event-driven network application framework
named “Netty [12]”, which adopts a write operation optimi-
zation technique to alleviate the aforementioned write-spin
problem. However, we found that such an optimization
introduces non-trivial CPU overhead in the case of the
absence of the write-spin problem. Our hybrid solution
extends the native Netty by applying a lightweight profiling
technique to check whether the write-spin problem exists
during the server runtime. Based on the runtime checking
results, our solution chooses themost efficient event process-
ing flow for each client request, avoiding both the write-spin
problem and the non-trivial optimization overhead.

Overall, our study of asynchronous Internet server effi-
ciency has a potentially significant impact on achieving good
performance and high resource efficiency in today’s cloud
data centers. Plenty of previous research efforts have shown
the challenges of achieving high performance at high system
utilization, especially for those latency-sensitive interactive
web applications [13], [14]. Our work shows that, given the

right design of event processing flow, asynchronous Internet
servers could continuously achieve stable and high perfor-
mance under the various runtime workload and network
conditions (even at high resource utilization). Our work also
provides future research opportunities as many system com-
ponents (e.g., ZooKeeper [15]) have been shifting from the
thread-based architecture to the asynchronous one, thus the
similar problemsmay also occur.

We outline the rest of the paper as follows. Section 2
presents a motivation experiment that merely upgrading an
application server from the thread-based version to its asyn-
chronous counterpart causes large system performance loss.
Section 3 studies the poor design of event processing flow
leading to unnecessary context switch overhead. Section 4
shows the write-spin problem of an asynchronous server
sending large size responses. Section 5 introduces our
hybrid solution. Section 6 summarized the related work and
Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 RPC versus Asynchronous Network I/O

Modern Internet servers generally use either synchronous
or asynchronous connectors for inter-tier (or between a client
and a server) communications. These connectors mainly
focus on the following activities: 1) manage network con-
nections from both the upstream and the downstream tiers,
2) read (and write) data through established connections,
and 3) parse and route new requests to the application layer
(business logic) and vice versa. Although asynchronous and
synchronous connectors are similar in functionality, they
are very different in the underlying mechanism to interact
with the application layer logic.

Synchronous connectors are mostly adopted by the RPC
thread-based servers. There are two types of threads in this
type connector: the main thread takes care of accepting new
connections and dispatching each connection to a dedicated
worker thread, and eachworker threadwill handle all activi-
ties of the corresponding connection until the close of it.
Accordingly, a large number of worker threads are needed
to handle high concurrency workload. Due to the user-
perceived sequential processing logic, it is relatively easy for
developers to build synchronous thread-based servers, but
the overhead associated with multithreading (e.g., locks and
context switches) can lead to performance degradation [3].

TABLE 1
Summary of Inefficient Event Processing Flow in Mainstreamed Asynchronous Servers=Middleware

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

Asynchronous connectors are able to use only one or a few
threads for handling high concurrency workload using an
event-driven mechanism. Fig. 1 depicts the interactions of
an asynchronous connector with the application layer and
the underlying operating system. To process a pool of estab-
lished connections, the asynchronous connector switches
between two phases (event monitoring phase and event han-
dling phase) to handle requests from these connections. The
event monitoring phase determines connections with the
occurrence of pending network I/O events, such as a read-
able or writable state of a particular connection. The under-
lying operating system provides the event notification
mechanism (e.g., select, poll, or epoll). The event handling
phase will perform the actual business logic by dispatching
each event to the corresponding event handler [3], [4], [16].

In practice, there are two typical server designs using the
asynchronous connectors. The first design is a single-
threaded server which uses only one thread to handle both
event monitoring and handling phase (e.g., Lighttpd [10]
and Node.js [11]). Previous work [17] shows that such a
design is able to minimize multithreading overhead when
dealing with in-memory workloads. In the second design, a
small size of the worker thread pool is used to concurrently
process events in the event handling phase (e.g., the asyn-
chronous Tomcat). Such a design is intended to efficiently
exploit a multi-core CPU [16], or deal with complex work-
load involving transient disk I/O activities. Variants of the
second design have been studied, such as the Staged Event-
Driven Architecture (SEDA) adopted by Haboob [3].

In general, previous research demonstrates that asyn-
chronous event-driven server is able to outperform the
thread-based one in throughput due to the reduced multi-
threading overhead, especially for servers facing high con-
currency workload. However, our study in the next section
will show the contradictory results.

2.2 Experimental Setup

We conduct our experiments using RUBBoS [5], which is a
representative n-tier benchmark modeled after the bulletin
board applications like Slashdot [18]. In our experiments, we
configure the benchmark as a typical 3-tier topology as
shown in Fig. 2, with one Apache web server, one Tomcat
application server, and one MySQL database server. There
are 24 servlets providing different interactions, which can be
further categorized into browse-only and read/write mixes

workload. We use the former one in this experiment. The
response size of each servlet varies from tens to hundreds of
kilobytes in a Zipf-like distribution. The default workload
generator simulates a number of concurrent users to mimic
real user behaviors. Each user browses different pages fol-
lowing a Markov chain model, and the think time between
two consecutive requests is averagely 7 seconds. Such a
design of workload generator is widely adopted by other
typical n-tier benchmarks like RUBiS [19], TPC-W [20], and
Cloudstone [21]. We ran the experiments in our private clus-
ter. Fig. 2 shows detailed software configurations, hardware
specifications1 and a sample 3-tier topology.

2.3 Performance Degradation from Tomcat Upgrade

Software upgrade in web-facing n-tier systems is common
for system admins due to the rapid application evolvement.
In this section, we show a case study that significant system
performance loss in a 3-tier RUBBoS benchmark after we
upgrade a thread-based application server to its asynchro-
nous counterpart. Concretely, we first adopt Tomcat 7
(noted as TomcatSync) as the application server, which
adopts a thread-based synchronous connector to communi-
cate with other servers. We then upgrade the Tomcat server
to a newer version (version 8, noted as TomcatAsync), the
default connector of which has changed to the asynchro-
nous one, with the expectation of system performance
improvement after the Tomcat upgrade.

Fig. 1. Interactions of an asynchronous connector between the applica-
tion server and underlying operating system.

Fig. 2. Details of the experimental setup.

Fig. 3. Significant performance degradation after we merely upgrade
Tomcat from the thread-based version 7 to the asynchronous version 8
in a 3-tier system.

1. Only one core is enabled in BIOS unless explicitly mentioned.

ZHANG ET AL.: THE IMPACT OF EVENT PROCESSING FLOW ON ASYNCHRONOUS SERVER EFFICIENCY 567

However, Fig. 3 shows an unexpected system perfor-
mance drop after the thread-based Tomcat upgrades to its
asynchronous counterpart. We use notation SYStomcatV 7 and
SYStomcatV 8 to represent the system with TomcatSync and
TomcatAsync, respectively. The figure shows that the
throughput of SYStomcatV 8 stops increasing at workload 9000,
which is much earlier than SYStomcatV 7. At workload 11000,
SYStomcatV 7 achieves 28 percent higher throughput than
SYStomcatV 8, and the corresponding average response time is
significantly increased by a factor of ten (300ms versus 3s).
Considering that we merely upgrade a thread-based Tomcat
server to a newer asynchronous one, such a result is counter-
intuitive.We note the bottleneck resource in the system is the
CPU of the Tomcat server in both cases, while the utilization
of the hardware resources (memory, disk I/O, etc.) of all
other components is moderate (less than 60 percent).

We also observed another interesting phenomenon that
the asynchronous TomcatAsync experiences significantly
higher frequency of context switches than the thread-based
TomcatSync when facing the same workload. We monitor
system-level metrics using Collectl [22]. For example, Tom-
catAsync encountered more than twice context switches
per second than TomcatSync (12950 /sec versus 5930 /sec)
at workload 11000. Since the high frequency of context
switches causes high CPU overhead, it makes sense to sug-
gest that the throughput gap between SYStomcatV 7 and
SYStomcatV 8 (see Fig. 3) is caused by the different level of con-
text switches in Tomcat. We note the Tomcat CPU is the bot-
tleneck in the system. However, significant previous work
shows that an asynchronous server is supposed to have
much fewer context switches than a thread-based server, so
why do we observe the contradictory results here? We will
answer this question in the next section.

3 INEFFICIENT EVENT PROCESSING FLOW

In this section, we introduce the inefficient event processing
flowproblem,which results in the systemperformance degra-
dation of the 3-tier RUBBoS benchmark after the thread-based
Tomcat server upgrades to its asynchronous counterpart.
In the following experimental evaluation, we separate out
Tomcat for better quantifying our performance analysis on
different versions of Tomcat.

3.1 Unnecessary Context Switches between Event
Handlers

In this set of experiments, we use JMeter [23] as a workload
generator sending HTTP requests to access Tomcat (both the

thread-based and the asynchronous) directly (no Apache
and MySQL is involved). We divide these HTTP requests
into three categories: small, medium, and large, which are
based on the response size of each request. Concretely, the
Tomcat server will respond with 3 sizes of responses (i.e.,
0.1KB, 10KB, and 100KB) according to different types of
requests from JMeter. To simulate realistic business logic,
the Tomcat server will generate a corresponding response
(e.g., a 0.1KB/10KB/100KB random string) on-the-fly during
runtime, such generation process (or computation) of each
request is proportional to the response size. We choose these
three sizes of server response because they are representative
of the RUBBoS benchmark. We note that JMeter adopts
threads to emulate real users sending requests. To precisely
control the workload concurrency to the target Tomcat
server, we set the think time between every two consecutive
requests from each client thread to be zero.

We first compare the throughput between the thread-
based TomcatSync and the asynchronous TomcatAsync

under different workload concurrencies and response
sizes, shown in Fig. 4. An interesting phenomenon is that
TomcatSync outperforms TomcatAsync in throughput
when the workload concurrency is less than a certain point
(referred as the crossover point), and then the throughput
superiority of two servers is reversed as the workload con-
currency continues to increase. For example, the crossover
point workload concurrency is 64 in the 10KB response
size case (Fig. 4b), and 1600 in the 100KB response size
case (Fig. 4c). We note that the response size for RUBBoS
benchmark in Section 2 varies from tens to hundreds of
kilobytes in a Zipf-like distribution and the average is
about 20KB, and the request processing concurrency in
Tomcat is averagely 35 when the system approaches satu-
ration. According to our experimental results here, it is not
surprising that TomcatSync outperforms TomcatAsync

in the 3-tier RUBBoS benchmark experiments, leading to
higher throughput of SYStomcatV 7 than that of SYStomcatV 8

since the Tomcat server is the bottleneck. The question
is why the thread-based TomcatSync outperforms the
asynchronous TomcatAsync before a certain workload
concurrency.

Our further analysis shows that it is the poor design of the
event processing flow in TomcatAsync that creates a large
number of context switches which leads to non-trivial CPU
overhead. In Table 2, we show that the frequency of context
switches in the asynchronous TomcatAsync is significantly
higher than that in the synchronous TomcatSync when

Fig. 4. The concurrency crossover point between TomcatSync and TomcatAsync increases as the response size increases from 0.1KB to 100KB.
The throughput of TomcatSync surpasses TomcatAsync at a wider concurrency range when response size is large (comparing (a) and (c)), sug-
gesting additional overhead for TomcatAsync leading to performance degradation.

568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

facing the same concurrency workload (e.g., from 8 to 3200).
Such results are consistent with our observations in the pre-
vious RUBBoS experiments. We note that TomcatAsync

uses the second asynchronous server design, in which the
server monitors events by a reactor thread (event monitor-
ing) and handles events by a small size of worker thread
pool (event handling) (see Section 2.1). To process a new
incoming request, Fig. 5 illustrates the event processing flow
in TomcatAsync, which includes the following four steps:

1) the reactor thread dispatches a read event to a
worker thread (reactor thread!worker thread A);

2) the worker thread reads and parses the event (read
request), prepares the response for the request, and
then generates a write event; the reactor thread is
notified the occurrence of the write event (worker
thread A! reactor thread);

3) the reactor thread dispatches the write event to a
worker thread to send the response out (reactor
thread!worker thread B).

4) the worker thread finishes sending the response, and
the control returns to the reactor thread (worker
thread B! reactor thread).

Accordingly, TomcatAsync needs four context switches
between the reactor thread and the worker threads to pro-
cess one client request. Such an inefficient design of the
event processing flow is widely adopted by many represen-
tative asynchronous software (see Table 1), showing a

general problem in designing asynchronous software. On
the other hand, each client request in the thread-based Tom-

catSync is dispatched to a dedicated worker thread, which
is intended to handle all the activities associated with
this request, including reading the request, preparing the
response, and sending the response out. Therefore, the con-
text switch only happenswhen the processingworker thread
is interrupted or swapped out by the operating systems due
to running out of CPU quota.

To better quantify the performance impact of context
switches on servers with different architectures, we simplify
the design of TomcatAsync and TomcatSync by ruling
out some unnecessary modules (e.g., cache management
and logging) and only keep the necessary parts related to
the business logic. We refer the simplified TomcatAsync

and TomcatSync as sTomcat-Async and sTomcat-

Sync, respectively. We also implement two alternative
asynchronous servers with reduced context switches as a
reference. The first alternative is sTomcat-Async-Fix,
which uses the same worker thread to process both the read
and the write events of the same request. In this case, the
same worker thread, after finishing preparing the response,
will continue to send the response out (step 2 and 3 in Fig. 5
are merged with step 4), thus only two context switches are
required to process one client request: 1) the reactor thread
dispatches a read event to one available worker thread in
the thread pool, and 2) the same worker thread returns the
control back to the reactor thread after sending response
out. The second alternative design is SingleT-Async,
which adopts a single thread to process events in both event
monitoring and event handling phase. Such a design is sup-
posed to avoid the context switch overhead. We summarize
the four types of servers with their associated context
switches when processing one client request in Table 3.
Readers who are interested can refer to our source code of
server implementation from our repository [24].

TABLE 2
TomcatAsync Encounters More Context Switches than

TomcatSync in Different Response Size Cases

Workload
concurrency

Response
size [KB]

TomcatAsync TomcatSync

[�1000=sec]

8
0.1 40 16
10 25 7
100 28 2

100
0.1 38 15
10 26 5
100 25 2

3200
0.1 37 15
10 22 6
100 28 3

The workload concurrency varies from 8 to 3200.

Fig. 5. Inefficient event processing flow in TomcatAsync for one client
request processing. There are four context switches between the reactor
thread and the worker threads.

TABLE 3
Summary of Different Types of Servers with Associated Context
Switches among the Threads Running in the User-Space (e.g.,
the Reactor Thread and Worker Threads) when Processing One

Client Request

Server type Context
Switch

Note

sTomcat-Async 4
Different worker threads
handle read and write
events respectively.

sTomcat-Async-Fix 2
The same worker thread
handles read and write
events.

sTomcat-Sync 0

Dedicated worker thread
for each request. Context
switches only occur by
interrupt or swapped out
due to running out of CPU
quota.

SingleT-Async 0

One thread handles both
event monitoring and
processing. No context
switches exist.

Other implicit context switches such as interrupt or swapped-out are not
counted.

ZHANG ET AL.: THE IMPACT OF EVENT PROCESSING FLOW ON ASYNCHRONOUS SERVER EFFICIENCY 569

We show the performance comparison among the four
architecturally different servers under different workload
concurrencies and response sizes as shown in Fig. 6. Through
Figs. 6a and 6d, we observe the negative correlation bet-
ween the server throughput and the corresponding fre-
quency of context switches of each server type. For example,
sTomcat-Async-Fix achieves 22 percent higher through-
put than sTomcat-Async while the context switch fre-
quency is 34 percent less when the server response size is
0.1KB and the workload concurrency is 16 in Figs. 6a and 6d,
respectively. In this set of experiments, the computation for
each request is proportional to the server response size,
which means in the small server response size scenario (e.g.,
the 0.1KB case), more CPU cycles will be wasted in context
switches compared to those consumed in actual request
processing. For example, in the 0.1KB response size case, the
gap of the context switches between sTomcat-Async-Fix

and sTomcat-Async in Fig. 6d could reflect the throughput
difference in Fig. 6a. We further validate such a hypothesis
by the other two types of servers SingleT-Async and
sTomcat-Sync, which achieves 91 percent (42K req/sec
versus 22 req/sec) and 57 percent (35K req/sec versus
22 req/sec) higher throughput than sTomcat-Async at
workload concurrency 100, respectively (Fig. 6a). The context
switch comparison in Fig. 6d can help explain the through-
put difference. For example, SingleT-Async only encoun-
ters a few hundred per second context switches (due to other
daemon processes such as monitoring tools like Collectl [22]
and perf [25]), which is three orders of magnitude less than
that of sTomcat-Async.

Recall our previous study in Table 3, context switches for
the thread-based sTomcat-Sync only occur when the
processing worker thread is interrupted or swapped out
due to running out of CPU quota; on the other hand, context
switches for the asynchronous sTomcat-Async happen
when the events are dispatched between the reactor thread

and the processing worker thread (e.g., step 1�4 in Fig. 5).
In this case, the lock operation is required to synchronize
the threads (the reactor thread and the worker threads),
which introduces lock contention overhead. We then use
perf [25] (a performance analysis tool) to validate our
hypothesis in Table 4. The server response size is 0.1KB and
the workload concurrency is 100. Our results show that the
lock contention between threads to coordinate information
(e.g., connection context) plays a significant role in perfor-
mance overhead for asynchronous servers with a design of
inefficient event processing flow. For example, the futex
overhead and cache miss in sTomcat-Async is 13.86 and
0.07 percent respectively, which is the highest out of four
servers. Such high overhead further results in less CPU effi-
ciency (i.e., the lowest instructions per cycle), leading to sig-
nificant throughput loss.

We note that the portion of the CPU overhead associated
with context switches becomes less when the size of the
server response becomes larger. This is because more CPU
cycles will be consumed for processing requests and send-
ing responses given the same number of context switches.
Fig. 6b and 6c show the throughput comparison of different

Fig. 6. Performance comparison among four architecturally different servers when the size of server response increases from 0.1KB to 100KB. Sub-
figure (a) and (d) show the negative correlation between server throughput and corresponding context switch frequency of each server type. How-
ever, when the response size is large (100KB), subfigure (c) shows that sTomcat-Sync performs the best compared to other types of servers
before the workload concurrency 400, suggesting other factors create additional overhead in asynchronous servers.

TABLE 4
Comparison of Futex Lock Overhead, Cache Miss, and Instruc-
tions per Cycle among Four Architecturally Different Servers

SingleT-
Async

sTomcat-
Sync

sTomcat-
Async-Fix

sTomcat-
Async

Throughput
[req/sec]

42K 35K 27K 22K

Futex lock [%] 0.49 7.62 11.05 13.86
Cache miss [%] 0.054 0.059 0.064 0.070
Instructions per
cycle [#/sec]

1.15 0.95 0.90 0.82

The server response size is 0.1KB and the workload concurrency is 100.

570 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

servers with the 10KB and the 100KB response size, respec-
tively. The throughput gap among these four types of serv-
ers becomes narrower, suggesting that context switches
have less impact on server throughput.

In fact, we also observe another interesting phenomenon
that the asynchronous SingleT-Async achieves lower
throughput than the thread-based sTomcat-Sync when
the workload concurrency is less than 400 as shown in
Fig. 6c. Although the context switches in SingleT-Async

are much less than those in sTomcat-Sync (see Fig. 6f).
These results suggest that other factors introduce significant
overhead in the asynchronous SingleT-Async as the
server response size increases (e.g., 100KB). We will explain
these factors in Section 4.

3.2 Evaluation in a Multi-Core Environment

Multi-core has been rapidly adopted in cloud data centers,
thus one requirement for modern Internet servers lies in the
ability to scale-out in a multi-core hardware setting [26], [27].
Our investigation shows that the context switch overhead
caused by inefficient event processing flow also has a signifi-
cant impact on the performance of asynchronous servers in a
multi-core environment (see Fig. 7). Previous studies [28],
[29] already show that the N-copy model is widely adopted
as a successful solution to enabling an asynchronous server
to leverage multiple CPUs in a multi-core environment. For
example, the asynchronous SingleT-Async only uses one
thread, we adopt the N-copy model for SingleT-Async

and each copy consumes one CPU core; N equals the num-
ber of cores enabled in the host. To avoid CPU crosstalk
penalty [30], we use CPU affinity to launch multiple copies
of servers in a multi-core environment. To conduct a fair
comparison, we also apply the N-copy model to the other
three types of servers. Interested readers can refer to Veal’s
work [26] which discusses the challenges to scale-up web
servers to multi-core. Nevertheless, the N-copy model is a
common practice in scaling modern Internet servers, espe-
cially in the emerging microservices architecture, where
each micro-service can scale-out multiple replicas to handle
workload increase [31].

We set the workload concurrency to 100 (high enough to
saturate the quad-core CPU) and the server response size to
0.1KB in all cases. Fig. 7a shows that the throughput of each
server scales almost linearly as the number of cores
increases; Fig. 7b shows the frequency of context switches
of different servers. These two figures show the consistent

results as in the single-core case (Fig. 6a and 6d), where the
inefficient event processing flow causes frequent context
switches in asynchronous servers and degrades the server
performance in a multi-core environment.

On the other hand, We note that the asynchronous serv-
ers such as sTomcat-Async and sTomcat-Async-Fix

delegate event processing to the small size of the worker
thread pool (see Section 2.1). Such a design is intended to
efficiently exploit multiple CPUs in a multi-core environ-
ment since most of the computations (business logic) rely
on the worker thread pool. We conduct the same experi-
ments on asynchronous sTomcat-Async-Fix with only a
single instance running in a multi-core environment in
Fig. 8, we refer it as sTomcat-Async-Fix w/1-copy. An
interesting observation is that in Fig. 8a, sTomcat-Async-
Fix w/ 1-copy outperforms sTomcat-Async-Fix w/ N-

copy by 13 percent in throughput in a dual-core environ-
ment. Such a performance improvement is because that
sTomcat-Async-Fix encounters less context switches in
the 1-copy case, as shown in Fig. 8b. Recall our previous
study in Table 3, context switches for the asynchronous
sTomcat-Async-Fix happen when the events are dis-
patched between the reactor thread and the processing
worker thread (i.e., step 1 and 4 in Fig. 5). In a dual-core
environment, the reactor thread and the processing worker
thread could be running on separate CPUs due to the oper-
ating system process scheduling, thus such event dispatches
between these two threads only involve the thread coordi-
nation among CPUs instead of context switches. In this
case, the context switch overhead is significantly reduced.

Fig. 7. The context switch problem caused by inefficient event processing flow also occurs in a multi-core environment. The workload concurrency
keeps 100. The server response size is 0.1KB so that the computation of each request is light. Thus the throughput difference in (a) is mainly caused
by the the context switch difference in (b).

Fig. 8. The 1-copymodel mitigates context switches problem in a multi-
core environment for sTomcat-Async-Fix, but it cannot solve the
problem. The workload concurrency keeps 100 and the server response
size is 0.1KB.

ZHANG ET AL.: THE IMPACT OF EVENT PROCESSING FLOW ON ASYNCHRONOUS SERVER EFFICIENCY 571

However, SingleT-Async w/ N-copy still performs the
best in all multi-core cases in Fig. 8a, showing that 1-copy
model only mitigates the context switch problem for sTom-
cat-Async-Fix, it cannot solve the problem completely.

Summary. Through our extensive experiments on four
architecturally different servers (Single-Async, sTomcat-
Async, sTomcat-Async-Fix, and sTomcat-Sync), we
observed that Single-Async is able to achieve the best
performance under various workload concurrencies when
the response size is small. The main reason is because
Single-Async reduces the multithreading overhead (e.g.,
context switches and lock) caused by inefficient event process-
ing flow, which generates frequent unnecessary intermediate
events, as shown in the other three servers (i.e., sTomcat-
Async-Fix, sTomcat-Async, and sTomcat-Sync). In the
next section, wewill discuss other factors thatmake Single-
Async less efficient, for example, when the server response
size is large (e.g., 100KB).

4 WRITE-SPIN IN ASYNCHRONOUS INVOCATION

In this section, we analyze the performance degradation of an
asynchronous server in the large response size case. We mea-
sure the CPU usage in both the user/kernel space and profile
some critical system calls of servers with different architec-
tures using monitoring tools like Collectl [22] and JPro-
filer [32]. Our measurements show that an asynchronous
server could encounter a severe write-spin problem in which
the server invokes a large amount of unnecessary I/O system
callswhen sending a large size server response, thus degrades
the server efficiency. We then explore some realistic factors in
cloud data centers that could exaggerate the negative effect of
the write-spin problem, degrading an asynchronous server
performance further.

4.1 Overhead Caused by Write-Spin

Recall the experimental results in Fig. 6a, which shows
that the asynchronous SingleT-Async outperforms the
thread-based sTomcat-Sync 20 percent in throughput at
the workload concurrency 8 in a small response size sce-
nario (i.e., 0.1KB). However, such a throughput superiority
is reversed at the same workload concurrency once the
server response increases to 100KB (Fig. 6c). Such a result
suggests that sending a large size of server response brings
a significant overhead for the asynchronous SingleT-

Async but not for the thread-based sTomcat-Sync.
To study the throughput drop of SingleT-Async in a

large size response scenario, we collect the performancemet-
rics (e.g., CPU) of the server with different response sizes
using Collectl. We show the CPU utilization comparison

between SingleT-Async and sTomcat-Sync as we
increase the response size from 0.1KB to 100KB as shown in
Table 5. The workload concurrency is 100 and the CPU of
both servers is 100 percent utilized. The table shows that
when increasing the 0.1KB response size to 100KB, the CPU
consumption in user-space of the asynchronous SingleT-
Async increases 25 percent (80-55 percent), which is much
less than 34 percent (92-58 percent) of the thread-based
sTomcat-Sync. Such a result indicates that SingleT-

Async is more sensitive than sTomcat-Sync in user-space
CPU utilization as response size increases.

We then profile SingleT-Async in different server
response size cases by JProfiler during the experiment run-
time, and see the difference of application-level activities.
We observed that the frequency of system call socket.

write() is exceptionally high when the response size is
100KB in Table 6. In fact, socket.write() will be called
when a server tries to send a response out. For example,
the synchronous thread-based sTomcat-Sync will call
socket.write() only once when processing each client
request regardless of the size of the server response. Such a
pattern is also true for asynchronous SingleT-Async in
the case of the 0.1KB and 10KB response sizes. However, the
table shows SingleT-Async requires averagely 102 calls of
socket.write() per request in the 100 KB response case.
It is well-known that system calls are expensive because
of the associated kernel-user switching overhead [33], thus
the high CPU overhead in user-space of SingleT-Async
sending a large response (in Table 5) can be explained.

We further investigate the exceptionally high socket
writes in SingleT-Async, which are caused by a combina-
tion of a small size TCP send buffer (16KB by default) and
the TCP wait-ACK mechanism. We refer it as the write-spin
problem in Fig. 9. Concretely, the processing thread in Sin-

gleT-Async invokes a Java library method java.nio.chan-
nels.SocketChanne.write() [34], which wraps the system call
socket.write(). In this case, the method tries to transfer
100KB data to the TCP send buffer, but it is only able to trans-
fer at most 16KB data at first because of the limited size of
TCP send buffer, which is structured as a byte buffer ring. A
TCP sliding window determines the actual amount of data
to be sent to the client and frees up the occupied TCP send
buffer space only if the ACKs are received from the previ-
ously sent-out packets. Considering the non-blocking nature
of the asynchronous servers, such a library method in Sin-

gleT-Async immediately returns the total amount of bytes
copied to the TCP send buffer once called; in the worst case,
it returns zero when the TCP send buffer is already full

TABLE 5
More User-Space CPU Resource is Consumed in
SingleT-Async than that in sTomcat-Sync

Server Type sTomcat-Sync SingleT-Async

Response Size 0.1KB 100KB 0.1KB 100KB
TP [req=sec] 35000 590 42800 520

User total % 55% 80% 58% 92%
System total % 45% 20% 42% 8%

We set the workload concurrency to 100 in all cases.

TABLE 6
Severe Write-Spin Problem Happens in 100KB Response Size

Case

Response
Size

req.
socket.write()

write()
per req.

0.1KB 238530 238530 1
10KB 9400 9400 1
100KB 2971 303795 102

The table shows the total number of socket.write() for each request in
SingleT-Async under different response size during a one-minute
experiment.

572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

(i.e.,system call socket.write() returns errno like
EWOULDBLOCK, indicating the fullness of TCP send
buffer [35]), resulting in a severe write spin problem. In con-
trast, the method to transfer data in the thread-based sTom-

cat-Sync is blocking; the actual write loop (data transfer)
occurs in kernel throughput the limited TCP send buffer,
and it is much more efficient than that occurs in user-space,
which is what the non-blocking socket.write() in the
asynchronous SingleT-Async does (the write spin-prob-
lem). In this case, sTomcat-Sync calls only one such a
method for each request, avoiding unnecessary spins of the
processingworker thread in SingleT-Async.

A straightforward solution is to manually set the TCP
send buffer to the same size (or even larger) as the server
response. However, in practice it is a non-trivial task due to
the following three reasons. First, predicting the response
size of internet services is difficult since the web appli-
cation workloads are dynamic by nature. For example, the
responses from a Tomcat server can vary from tens of bytes
to megabytes since requests may require dynamic content
from the downstream databases. Second, HTTP/2 intro-
duces Server Push, which allows a server to push several
responses for answering one client request [36]. For example,
with HTTP/2 Server Push, a typical news website like CNN.
com can reply for one request withmultiple responses which
may easily accumulate up to tens of megabytes (e.g., static
and dynamic contents such as images and database query
results). Third, setting an oversized size TCP send buffer
only for the peak size of server responses could lead to TCP
over-buffering, which not only risks running out of the
server memory under high concurrency workload but also
causes the sluggish interactive response problem [37]. Thus,
it is a big challenge to set an appropriate size of the TCP send
buffer in advance to avoid thewrite-spin problem.

In fact, TCP Auto-Tuning function already presents in
Linux kernel above 2.4, which is supposed to automatically
adjust the size of the TCP send buffer to maximize the band-
width utilization [38] according to the runtime network

conditions. However, TCP Auto-Tuning mainly focuses on
maximizing the utilization of the available bandwidth of the
link between the client and the server using Bandwidth-
Delay Product (BDP) rule [39] without the knowledge of the
application information such as response sizes. Besides, our
experiments show that the default TCP Auto-Tuning algo-
rithm is conservative in choosing the send buffer size to
avoid frequent packets loss, thus avoid more delay for the
application caused by subsequent TCP retransmissions. As
a result, the size of the send buffer after auto-tuning may
still be deficient for applications, resulting in the write-spin
problem for the asynchronous servers. Fig. 10 shows Sin-

gleT-Async with auto-tuning performs worse than the
other case with a fixed large TCP send buffer (100KB), sug-
gesting the occurrence of the write-spin problem. We note
that TCP auto-tuning is intended to maximize the band-
width utilization regardless of different runtime network
conditions. In this set of experiments, we also vary network
latency between the server node and the client node from
0ms to 20ms. The experimental results show that the perfor-
mance gap between two servers is notably enlarged when
non-negligible network latency exists as shown in Fig. 10.
We will discuss more in the next section.

4.2 Write-Spin Exaggerated by Network Latency

Network latency is inevitable in modern cloud data centers.
In general, it ranges from a few to tens of milliseconds
depending on the location of the component servers, which
may run on the different physical nodes located in different
racks or even data centers. Our experiments reveal that the
non-negligible network latency can exaggerate the overhead
caused by the write-spin problem, leading to significant per-
formance loss.

We show the impact of network latency on the perfor-
mance of the thread-based and asynchronous servers in
Fig. 11. The workload concurrency is 100 and the server
response size is 100KB. The TCP send buffer size is 16KB
by default, with which the write-spin problem occurs in
the asynchronous servers. To quantitatively control the
network latency, we use the traffic control tool “tc” in the
client node. Fig. 11a shows that in a non-negligible network
latency scenario, both the asynchronous SingleT-Async

and sTomcat-Async-Fix have a significant throughput
drop. For example, the maximum achievable throughput
of SingleT-Async surprisingly degrades by 95 percent
when a small 5-millisecond increase in network latency.

Our further analysis shows that such a significant
throughput degradation is caused by the amplification effect

Fig. 9. Write-spin problem causes unnecessary system calls, leading to
severe CPU overhead and throughput loss. Due to a small TCP send
buffer size and the TCP wait-ACK mechanism, a worker thread write-
pins on the socket.write() and can only continue to send more data
after receiving ACKs of previously sent packets.

Fig. 10. TCP Auto-Tuning is unable to solve write-spin problem due to
insufficient application context. The server response size is 100KB and
the workload concurrency is 100.

ZHANG ET AL.: THE IMPACT OF EVENT PROCESSING FLOW ON ASYNCHRONOUS SERVER EFFICIENCY 573

on response time when the write-spin problem occurs. In a
write-spin scenario, an asynchronous server needs multiple
rounds of data transfer to send a large size response (e.g.,
100KB) out because of the small TCP send buffer. The server
only continues to transfer data until it receives the ACKs
from the clients for the previously sent-out packets (see
Fig. 9). Therefore, a small increase in network latency can
lead to a long delay in the server response time in Fig. 11b.
For instance, the response time of SingleT-Async is ampli-
fied from 0.18s to 3.60s after adding 5-millisecond network
latency. Based on Little’s Law, the server throughput has a
negative correlation with the response time if the workload
concurrency (concurrent requests in the server) keeps the
same. Thus, 20 times increase in the server response time
leads to 95 percent throughput degradation of SingleT-
Async as shown in Fig. 11a.

4.3 Impact of Client Receive Buffer Size

Other network factors may also trigger the write-spin prob-
lem in an asynchronous server, causing significant per-
formance degradation. For example, a client’s TCP receive
buffer size decides howmuchdata that the sender (the server)
can send at one time. Small TCP receive buffer size means
the server needs to transfer a large size of response multi-
ple times in order to finish the transfer, which exaggerates
the write-spin problem and degrades the server through-
put [39]. In fact the receive buffer size is determined by the
TCP flow control mechanism between a client and a server
(similar to the send buffer size in the server side), how-
ever, the diversity of clients in recent years (e.g., cell
phones or tablets) may limit a client’s send buffer size
due to its limited physical resources (e.g., memory). For
example, the receive buffer size in the popular mobile OS
Android [40] is only 4098 bytes (�4KB) [41], which is far
from sufficient for most modern web applications.

In this set of experiments, we vary the client receive
buffer size from 4KB to 100KB to study its impact on the
performance of an asynchronous server when sending a rel-
atively large response size (100KB), shown in Fig. 12. The
thread-based sTomcat-Sync acts as a baseline. The net-
work latency in both cases keeps zero. This figure shows
that SingleT-Async achieves 170 percent higher through-
put when the client receive buffer increases from 4KB to
100KB. The poor performance in the 4KB case is because of
the severe write-spin problem caused by small client receive
buffer size and the TCP flow control mechanism as men-
tioned above. On the other hand, sTomcat-Sync has a

more stable performance under different client receive
buffer settings because multithreading mitigates the write-
spin problem through parallel data transfer as shown in
Fig. 12.

5 SOLUTION

In the previous sections, we have studied two design defi-
ciencies of asynchronous servers due to the inefficient event
processing flow: the context switch problem and the write-
spin problem. The former one is caused by the poor design
of unnecessary event dispatching between the reactor
thread and the worker threads (see Table 3), while the latter
one results from the unpredictability of the server response
size and the limited TCP send buffer size. Although our
work is motivated by a 3-tier system throughput drop
caused by an inefficient asynchronous Tomcat server (see
Section 2.3), we found that many open-sourced asynchro-
nous software packages suffer from the same problems as
in the asynchronous Tomcat (see Table 1).

To design a good performance and high efficiency asyn-
chronous server, we should solve the aforementioned two
deficiencies under different runtime workload and network
conditions. In this section, we first studyNetty [12], a widely-
used asynchronous event-driven network I/O framework.
Netty employs an improved design of event processing flow
and provides application-level write operation optimization,
with the aim of mitigating the overhead caused by two defi-
cienciesmentioned above, butwith a non-trivial optimization
overhead. We then present our hybrid solution, which aims
to solve the two deficiencies while avoids theNetty optimiza-
tion overhead by exploiting the merits of the different asyn-
chronous architectures.

5.1 Netty for Reducing Context Switches
and Write-Spin

Netty is a widely-used asynchronous event-driven network
I/O framework for rapid development of good performance
Internet servers. Netty can be categorized into the second
design of asynchronous architectures (see Section 2.1),
which uses a reactor thread to accept new connections and
small size of the worker thread pool to handle established
connections with pending events.

Although using worker threads, Netty makes two signi-
ficant changes to minimize the context switches compared
to sTomcat-Async and sTomcat-Async-Fix. First, the
reactor thread and the worker threads in Netty take different

Fig. 11. Performance degradation of asynchronous servers is exagger-
ated when write-spin occurs and non-negligible network latency exists.
The server response size is 100KB while the TCP send buffer size is the
default 16KB.

Fig. 12. Write-spin problem still exists when the client receive buffer size
is small, due to the TCP flow control mechanism. We set the server
response size to 100KB. The server TCP Auto-Tuning feature is enabled
by default.

574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

roles compared to those in sTomcatAsync and sTomcat-

Async-Fix. We note that in the case of sTomcat-Async
and sTomcat-Async-Fix, the reactor thread is responsible
for accepting new connections and monitoring events, and
worker threads only take charge of handling events; the
event dispatches between the reactor thread and worker
threads involve context switches (step 1�4 in Fig. 5). On the
other hand, such frequent event dispatching no longer exists
in Netty: the reactor thread only takes charge of accepting
new connections and assigning each established connection
to a worker thread; each worker thread takes charge of both
monitoring and handling events for the assigned connec-
tions. As a result, such a role change of the reactor thread
and the worker threads in Netty can reduce context switches
significantly. Second, Netty adopts a pipeline design of event
handlers for business logic, in which the output of a prede-
cessor handler is passed to the next handler in line through a
function call (all handlers are processed by the same worker
thread), thus avoiding unnecessary intermediate events and
the associated context switches between the reactor thread
and theworker threads.

To alleviate the write-spin problem, Netty uses a runtime
write-spin checking when the processing worker thread
tries to send a large amount of data (i.e., server responses)
to the kernel using socket.write(). Concretely, each
Netty worker thread records the total number of socket.
write() has been called to copy a single response to TCP

send buffer, noted as a counter writeSpin, shown in
Fig. 13. For each socket.write(), the processing worker
thread keeps track of the total bytes of data which has been
sent to the kernel, referred as return_size. We note that
the processing worker thread will jump out the write spin if
either two of the following conditions is met:

� The return_size equals to zero, suggesting the
fullness of the TCP send buffer;

� The writeSpin is greater than a user-defined
threshold (16 in Netty-v4 by default), indicating a
severe write-spin problem;

When jumping out, the processing worker thread will
suspend current data transfer, save the connection context,
and resume this data transfer after it loops over other avail-
able connections with pending events. Thus Netty is able to
prevent the processing worker thread from blocking on a
certain connection for copying a large size response to the
TCP send buffer in the kernel. However, such an optimiza-
tion brings the inevitable CPU overhead when no write-
spin problem exists in the small size response case.

We demonstrate the effectiveness of a Netty-based server
to mitigate the write-spin problem but with the associated
optimization overhead in Fig. 14. We build a Netty-based
simple application server, noted as NettyServer. The
figure shows the throughput comparison among three types
of servers (Single-Async, NettyServer, and sTomcat-

Sync) under different workload concurrencies and response
sizes. To evaluate the impact of performance on different
servers in both with and without write-spin problem scenar-
ios, the TCP send buffer size is set to 16KB by default. Thus
nowrite-spin problem occurs in the 0.1KB and 10KB response
size cases, but a serious write-spin problem in the 100KB
response size case. We show that NettyServer outper-
forms other two types of servers when the response size is
100KB, shown in Fig. 14c. For example, NettyServer

achieves 27 percent higher throughput than Single-Async

as the workload concurrency is 100, indicating the effective-
ness ofNettyServer’s write optimization technique inmiti-
gating the write-spin problem; NettyServer achieves
10 percent higher throughput than sTomcat-Sync at the
sameworkload concurrency, suggesting NettyServermin-
imizes the heavy multithreading overhead. However, such
performance superiority is reversed as the response size
decreases to 0.1KB and 10KB in Fig. 14a and 14b. For exam-
ple, NettyServer performs 17 percent less in throughput

Fig. 13. Netty adopts a runtime checking to mitigate the overhead
caused by write-spin problem.

Fig. 14. Netty effectively mitigates the write-spin problem in the large response size case but introduces non-trivial write optimization overhead in the
small response size case. We set the size of TCP send buffer to the default 16KB. (a) and (b) show that NettyServer has lower throughput than
SingleT-Async, suggesting non-trivial write optimization overhead, while (c) shows that Netty achieves the best performance out of three types of
servers, indicating the effectiveness of alleviating the write-spin problem.

ZHANG ET AL.: THE IMPACT OF EVENT PROCESSING FLOW ON ASYNCHRONOUS SERVER EFFICIENCY 575

compared to SingleT-Async at the workload concurrency
100 when the response size is 0.1KB in Fig. 14a, suggesting
the non-trivial optimization overhead in the case of the
absence of the write-spin problem in NettyServer. Thus
there is no one-size-fits-all solution that outperforms the
other types of servers under variousworkload conditions.

We also found such a non-trivial optimization overhead
widely exists in many mainstreamed asynchronous servers
(see Table 1), for example, Nginx [9] and Lighttpd [10].

5.2 A Hybrid Solution

So far we have shown that an appropriately chosen asyn-
chronous solution (see Fig. 14) can always provide better per-
formance than the thread-based counterpart under various
runtimeworkload conditions. However, there is no one-size-
fits-all asynchronous solution which always achieves the
best performance. Concretely, SingleT-Async encounters
the write-spin problem when the response size is large (see
Section 4.1); and NettyServer encounters the non-trivial
optimization overhead when the response size is small (see
Section 5.1). To address such two server design deficiencies,
we propose a hybrid solution by exploiting the merits of
both SingleT-Async and NettyServer regardless of dif-
ferent runtime workload and network conditions. There are
two assumptions for our hybrid solution:

� The response size is unpredictable.
� The workload is in-memory workload.
The first assumption eliminates the case that the server is

launched with a large fixed size of TCP send buffer for each
connection to avoid the write-spin problem. It is valid due
to the difficulty of predicting the server response size and
the over-buffering problem that we have discussed in
Section 4.1. The second assumption excludes the case of fre-
quent disk I/O blocking the processing worker thread. This
is also valid since in-memory stores like Memcached [42]
and Redis [43] are widely used by modern internet services
due to the strict low-latency requirement [44]. The solution
for workloads involving frequent disk I/O is beyond the
scope of this paper and requires additional research.

Our hybrid solution integrates the merits of different
asynchronous architectures to efficiently handle client
requests under various runtime workload and network
conditions, shown in Fig. 15. We refer our hybrid solution
as HybridNetty. Concretely, HybridNetty extends the
native Netty by applying a lightweight profiling technique
to check the occurrence of the write-spin problem for each
request at the beginning of server runtime (i.e., the initial
warm-up phase). In this case, HybridNetty categorizes all
incoming requests into two classes: thewriteSpinReq requests
and the nonWriteSpinReq requests. The writeSpinReq requests
cause the write-spin problem while the nonWriteSpinReq
requests do not. During runtime phase, HybridNetty

maintains a map object which keeps a record of category for
each request. Thus when a new request comes, Hybrid-
Netty checks the category of the request in the map object,
and then determines the most efficient event processing flow
to process the request (see check req type in Fig. 15). Con-
cretely, HybridNetty will choose the NettyServer exe-
cution path to process each writeSpinReq request to avoid the
write-spin problem and the SingleT-Async execution

path to process each nonWriteSpinReq request to avoid the
overhead caused by the write operation optimization. We
note the server response size even for the same request could
change over time due to the changes of system state (e.g.,
the dataset has changed). In this case, the map object will
be updated once HybridNetty detects a request has
been categorized into a wrong class, thus HybridNetty is
able to keep the latest category of each request for future
efficient processing. Since our hybrid solution passively pro-
file each incoming request, it cannot completely solve the
write-spin problem. The write-spin problem occurs first,
and then it is fixed by dynamically choosing the most effi-
cient execution path according to different the request
category. Thus the frequency of the write-spin problem is
dramatically reduced.

There are two potential extensions of HybridNetty to
further improve its performance. The first one is an alterna-
tive non-blocking I/O pattern, which blocks the write-spin
worker thread using select, poll, or epoll and enables
the reactor thread to poll for completed I/O operations. Such
a pattern is able to provide potential performance improve-
ment of HybridNetty by completely avoiding the write-
spin problem. The second one is that the reactor thread can
be removed in HybridNetty, and the limited number of the
worker threads can compete for a shared spin-lock to call the
system call socket.accept() and accept new connec-
tions. Such a extension can further remove the context switch
overhead between the main reactor thread and other worker
threads, especially under certain workload that the main
reactor thread needs to frequently hand over new estab-
lished connections to worker threads. However, such two
extensions of HybridNetty need more investigation, and
wewill make it as our futurework.

5.3 Experimental Validation

Validation in a Single-Core Environment. We validate the effi-
ciency of our hybrid solution compared to SingleT-Async

and NettyServer under various runtime workload condi-
tions and network latencies in Fig. 16. The workload is com-
posed of two categories of requests: the heavy requests and
the light requests. These two categories of request differ in
the size of the server response; heavy requests, due to their
large response size (100KB), are able to trigger the write-spin

Fig. 15. Illustration of the worker thread processing flow in Hybrid
solution.

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

problem while light requests (0.1KB) can not.2 To simulate
different realistic workload scenarios, we vary the ratio of
heavy requests from 0 and 100 percent. To clearly show the
effectiveness of our hybrid solution, we adopt the normal-
ized throughput comparison and use the HybridNetty as
the baseline.

Validation in a Multi-Core Environment. We also validate
the effectiveness of our hybrid solution in a multi-core envi-
ronment in Fig. 17. The workload concurrency is 100 and the
TCP send buffer size is 16KB by default. In this set of experi-
ments, the workload is composed of 2 percent heavy
requests and 98 percent light requests, which follows Face-
book’s Memcached workload report [46]. To perform a fair
comparison, we adopt theN-copy model [28] to enable three
servers to take advantage of multiple cores in Fig. 17. The
figure shows that the maximum achievable throughput of
each type of servers scales as the number of cores increases;
HybridNetty outperforms the other two in all scenarios.
For example, Fig. 17b shows that HybridNetty performs
almost 10X higher than SingleT-Async and 35 percent
higher than NettyServer in throughput respectively in a
quad-core environment when the network latency is 5ms,
suggesting the effectiveness of our solution in resolving the
context switch problem and the write-spin problem without
significant write operation optimization overhead.

6 RELATED WORK

Synchronous Thread-Based Server Designs for High Concurrency
Support. Many previous research efforts in this category [4],
[47], [48], [49] share a similar goal: achieving the same or even
better performance compared to the corresponding asyn-
chronous event-driven counterparts. For instance, Behren

et al. [47] presents a scalable user-space thread library
Capriccio [48] and demonstrates that the threads can pro-
vide all the benefits of the events but with a simpler and
more natural programming model. They further show a
Capriccio-based synchronous server Knot is able to out-
perform SEDA’s event-driven server Haboob [3] under
high concurrency workload (up to tens of thousands of
concurrent clients). However, Krohn et al. [4] show that
the thread library Capriccio uses sophisticated stack man-
agement to mimic the event handling to the underlying
operating system. In addition, the authors of Capriccio
also notice that the thread interface still lacks flexibility
compared to the events [47]. These research efforts imply
that the asynchronous event-driven architecture still plays
an important role in constructing high performance and
high-efficiency Internet servers.

There are plenty of research works to show that asyn-
chronous event-driven architecture has been considered as
a superior alternative to the thread-based design for high
performance systems [50], [51], [52]. For example, Cheng
et al. adopt asynchronous design in an I/O efficient graph
system to solve problems of poor I/O locality, efficient
selective scheduling, and expensive synchronization cost.
The optimizations for asynchronous event-driven servers
can be further divided into two broad categories.

OS-Level Optimization for Asynchronous Event-Driven Serv-
ers. Research work in this category is mainly motivated by
mitigating the unnecessary system calls (e.g., event notifi-
cation mechanisms such as select, poll, and epoll) and the
associated CPU overhead [53], [54], [55] when facing
high concurrency workload. For example, Lever et al. [47]
present a high-performance in-kernel web server TUX,
which eliminates the user/kernel crossings overhead by
delegating both event monitoring and event handling to
the kernel thread. Han et al. [54] present a scalable and

Fig. 16. Our hybrid solution achieves the best performance under various mixes of workload and network latencies. We set the workload concurrency
to 100 and the TCP send buffer size to the default 16KB. We compare the normalized throughput among the three types of servers and use Hybrid-

Netty as the baseline.

Fig. 17. Our hybrid solution still performs the best in a multi-core environment. We keep the workload concurrency to be 100; the workload consists of
2 percent heavy and 98 percent light requests. Both (a) and (b) shows that HybridNetty performs the best from one-core to quad-core, with or
without network latency.

2. Each TCP connection has private send buffer [45], thus the write-
spin problem is only caused by connections with the heavy requests.

ZHANG ET AL.: THE IMPACT OF EVENT PROCESSING FLOW ON ASYNCHRONOUS SERVER EFFICIENCY 577

efficient network I/O named MegaPipe, to lighten applica-
tion layer socket-related system calls for message-oriented
workloads.

Configurations Tuning for Asynchronous Event-Driven Servers.
Previous work concludes that an asynchronous web server
needs to be well-tuned for the best performance [16], [50],
[56], [57], [58], [59], [60], [61]. For example, Brecht et al. [56]
study the impact of connection-accepting strategies (either
aggressive or passive) on the performance of the asynchro-
nous event-driven mServer. Pariag et al. [16] analyze the
impact of maximum simultaneous connections and differ-
ent socket I/O (either blocking or non-blocking) on the per-
formance of different asynchronous architectures such as
the single-threaded mServer and the staged design Wat-
Pipe. Google’s research group [57] reports that increasing
TCP’s initial congestion window is able to significantly
improve average HTTP response latency in high latency
and low bandwidth networks. Our work in the paper is
closely related to their research. Previous research efforts
focus on either OS-level optimization or configurations tun-
ing for asynchronous event-driven servers. Our approach
focuses more on optimizing server architecture, thus our
work and their work are complementary. The lessons that
we learned from their work may also apply to our pro-
posed solution.

7 CONCLUSIONS

In this paper, we show the impact of the event processing
flow on the efficiency of asynchronous servers. Through
extensive experiments using both realistic macro- and
micro-benchmarks, we observe that the inefficient design of
the event processing flow in an asynchronous server may
cause high CPU overhead and result in significant perfor-
mance loss in comparison with the thread-based counter-
part. Concretely, the inefficient design of event processing
flow may either cause high CPU context switch overhead
between event handlers (see Section 3) or the write-spin
problem when dealing with large size of server responses
(see Section 4). Some network-related factors (e.g., network
latency and client receive buffer) will exaggerate the degra-
dation of asynchronous server performance. We present a
hybrid solution which exploits the merits of different asyn-
chronous event-driven architectures to adapt to dynamic
runtime workload and network conditions (see Section 5).
In general, our research results provide a solid building
block in developing modern Internet servers that can
achieve both high performance and high resource efficiency
in the cloud.

ACKNOWLEDGMENTS

This research has been partially funded by National Science
Foundation by CISEs CNS (1566443), Louisiana Board of
Regents under grant LEQSF(2015-18)-RD-A-11, and gifts or
grants from Fujitsu.

REFERENCES

[1] R. Hashemian, D. Krishnamurthy, M. Arlitt, and N. Carlsson,
“Improving the scalability of a multi-core web server,” in Proc. 4th
ACM/SPEC Int. Conf. Perform. Eng., 2013, pp. 161–172.

[2] Q. Wang, Y. Kanemasa, J. Li, C.-A. Lai, C.-A. Cho, Y. Nomura, and
C. Pu, “Lightning in the cloud: A study of very short bottlenecks
on n-tier web application performance,” in Proc. USENIX Conf.
Timely Results Operating Syst., 2014.

[3] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for
well-conditioned, scalable internet services,” in Proc. 18th ACM
Symp. Operating Syst. Principles, 2001, pp. 230–243.

[4] M. Krohn, E. Kohler, and M. F. Kaashoek, “Events can make
sense,” in Proc. USENIX Ann. Tech. Conf. , 2007, pp. 7:1–7:14.

[5] RUBBoS: Bulletin board benchmark. Feb. 2005. [Online]. Available:
http://jmob.ow2.org/rubbos.html

[6] Jetty: A Java HTTP (Web) Server and Java Servlet Container. Aug.
2019. [Online]. Available: http://www.eclipse.org/jetty/

[7] Oracle GlassFish Server. Aug. 2019. [Online]. Available: http://
www.oracle.com/technetwork/middleware/glassfish/overview/
index.html

[8] MongoDB Async Java Driver. Aug. 2019. [Online]. Available: http://
mongodb.github.io/mongo-java-driver/3.5/driver-async/

[9] nginx: a high performance HTTP and reverse proxy server, as well as a mail
proxy server. Aug. 2019. [Online]. Available: https://nginx.org/en/

[10] lighttpd. Aug. 2019. [Online]. Available: https://www.lighttpd.net/
[11] Node.js. Aug. 2019. [Online]. Available: https://nodejs.org/en/
[12] Netty. Aug. 2019. [Online]. Available: http://netty.io/
[13] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,

vol. 56, no. 2, pp. 74–80, 2013.
[14] Q. Wang, C.-A. Lai, Y. Kanemasa, S. Zhang, and C. Pu, “A study

of long-tail latency in n-tier systems: Rpc vs. asynchronous
invocations,” in Proc. 37th Int. Conf. Distrib. Comput. Syst., 2017,
pp. 207–217.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper:
Wait-free coordination for internet-scale systems,” in Proc. USE-
NIX Annu. Tech. Conf., 2010, pp. 11–11.

[16] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R. Cheriton,
“Comparing the performance of web server architectures,” ACM
SIGOPS Operating Syst. Rev., vol. 41, no. 3, pp. 231–243, 2007.

[17] C. Li, K. Shen, and A. E. Papathanasiou, “Competitive prefetching
for concurrent sequential i/o,” in Proc. 2nd ACM SIGOPS/EuroSys
Eur. Conf. Comput. Syst., pp. 189–202.

[18] S. Adler, “The slashdot effect: An analysis of three internet pub-
lications,” Linux Gazette, vol. 38, 1999, Art. no. 2.

[19] RUBiS: Rice University Bidding System. Oct. 2009. [Online]. Avail-
able: http://rubis.ow2.org/

[20] TPC-W: A Transactional Web e-Commerce Benchmark. Aug. 2019.
[Online]. Available: http://www.tpc.org/tpcw/

[21] O. A.-H. Hassan and B. A. Shargabi, “A scalable and efficient web
2.0 reader platform for mashups,” Int. J. Web Eng. Technol., vol. 7,
no. 4, pp. 358–380, Dec. 2012.

[22] Collectl. Oct. 2018. [Online]. Available: http://collectl.sourceforge.
net/

[23] Apache JMeterTM. Aug. 2019. [Online]. Available: http://jmeter.
apache.org

[24] sTomcat-NIO, sTomcat-BIO, and two alternative asynchronous servers.
Mar. 2018. [Online]. Available: https://github.com/sgzhang/
AsynMessaging

[25] perf. Jun. 2018. [Online]. Available: http://www.brendangregg.
com/perf.html

[26] B. Veal and A. Foong, “Performance scalability of a multi-core
web server,” in Proc. 3rd ACM/IEEE Symp. Archit. Netw. Commun.
Syst., 2007, pp. 57–66.

[27] F. Gaud, S. Geneves, R. Lachaize, B. Lepers, F. Mottet, G. Muller,
and V. Qu�ema, “Efficient workstealing for multicore event-
driven systems,” in Proc. 30th Int. Conf. Distrib. Comput. Syst., 2010,
pp. 516–525.

[28] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazieres,
and M. F. Kaashoek, “Multiprocessor support for event-
driven programs.” in Proc. USENIX Annu. Tech. Conf., 2003,
pp. 239–252.

[29] A. S. Harji, P. A. Buhr, and T. Brecht, “Comparing high-perfor-
mance multi-core web-server architectures,” in Proc. 5th Annu.
Int. Syst. Storage Conf., 2012, pp. 1:1–1:12.

[30] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. Amsterdam, Netherlands: Elsevier, 2011.

[31] J. Lewis and M. Fowler, “Microservices: A definition of this new
architectural term,” Oct. 2018. [Online]. Available: https://
martinfowler.com/articles/microservices.html

[32] JProfiler: The award-winning all-in-one Java profiler. Aug. 2019.
[Online]. Available: https://www.ej-technologies.com/products/
jprofiler/overview.html

578 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 3, MARCH 2020

http://jmob.ow2.org/rubbos.html
http://www.eclipse.org/jetty/
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://mongodb.github.io/mongo-java-driver/3.5/driver-async/
http://mongodb.github.io/mongo-java-driver/3.5/driver-async/
https://nginx.org/en/
https://www.lighttpd.net/
https://nodejs.org/en/
http://netty.io/
http://rubis.ow2.org/
http://www.tpc.org/tpcw/
http://collectl.sourceforge.net/
http://collectl.sourceforge.net/
http://jmeter.apache.org
http://jmeter.apache.org
https://github.com/sgzhang/AsynMessaging
https://github.com/sgzhang/AsynMessaging
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html

[33] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling
with exception-less system calls,” in Proc. 9th USENIX Conf. Oper-
ating Syst. Des. Implementation, 2010, pp. 33–46.

[34] Java docs: Class SocketChannel. Aug. 2019. [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/nio/
channels/SocketChann el.html#write(java.nio.ByteBuffer)

[35] Linux Programmer’s Manual: SEND(2). Aug. 2019. [Online]. Avail-
able: http://man7.org/linux/man-pages/man2/send.2.html

[36] M. Belshe, R. Peon, andM. Thomson, “Hypertext transfer protocol
version 2 (HTTP/2),” IETF RFC 7540, May 2015. [Online]. Avail-
able: https://tools.ietf.org/html/rfc7540

[37] B. Constantine, G. Forget, R. Geib, and R. Schrage, “Framework
for TCP throughput testing,” IETF RFC 6349, Aug. 2011. [Online].
Available: http://www.ietf.org/rfc/rfc6349.txt

[38] M. Fisk and W.-c. Feng, “Dynamic right-sizing in tcp,” 2001,
Art. no. 2. [Online]. Available: http://lib-www.lanl.gov/la-pubs/
00796247.pdf

[39] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”
IETF RFC 2581, Apr. 1999. [Online]. Available: https://tools.ietf.
org/html/rfc2581

[40] Android. Aug. 2019. [Online]. Available: https://www.android.com/
[41] Documentations for Android. Aug. 2019. [Online]. Available: https://

developer.android.com/reference/java/net/SocketOptions/
[42] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,

R. McElroy, M. Paleczny, D. Peek, P. Saab, et al., “Scaling memc-
ache at facebook,” in Proc. 10th USENIX Conf. Networked Syst. Des.
Implementation, 2013, vol. 13, pp. 385–398.

[43] Redis. Aug. 2019. [Online]. Available: https://redis.io/
[44] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and

H. C. Li, “An analysis of facebook photo caching,” in Proc. 24th
ACM Symp. Operating Syst. Principles, 2013, pp. 167–181.

[45] The TCP Send Buffer, In-Depth. [Online]. Available: https://
devcentral.f5.com/s/articles/the-send-buffer-in-depth-21845

[46] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc. ACM
SIGMETRICS Perform. Eval. Rev., 2012, vol. 40, no. 1, 2012, pp. 53–64.

[47] R. von Behren, J. Condit, and E. Brewer, “Why events are a bad
idea (for high-concurrency servers),” in Proc. 9th Conf. Hot Top.
Operating Syst., 2003, pp. 4–4.

[48] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: Scalable threads for internet services,” in Proc. 19th
ACM Symp. Operating Syst. Principles, 2003, pp. 268–281.

[49] A. Sriraman and T. F. Wenisch, “mtune: Auto-tuned threading for
oldi microservices,” in Proc. 13th USENIX Symp. Operating Syst.
Des. Implementation, 2018, pp. 177–194.

[50] S. Cheng, G. Zhang, J. Shu, and W. Zheng, “Asyncstripe: I/o effi-
cient asynchronous graph computing on a single server,” in Proc.
11th IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codes. Syst. Synthe-
sis, 2016, Art. no. 32.

[51] M. Garc�ıa-Valdez and J. Merelo, “evospace-js: Asynchronous
pool-based execution of heterogeneous metaheuristics,” in Proc.
Genetic Evol. Comput. Conf. Companion, 2017, pp. 1202–1208.

[52] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover optimiza-
tion via asynchronous multi-user deep reinforcement learning,”
in Proc. Int. Conf. Commun., 2018, pp. 1–6.

[53] C. Lever, M. Eriksen, and S. Molloy, “An analysis of the TUX web
server,” University of Michigan, CITI Tech. Rep. 00-8, Nov. 2000.

[54] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “Megapipe: A
new programming interface for scalable network i/o,” in Proc. 10th
USENIXConf. Operating Syst. Des. Implementation, 2012, pp. 135–148.

[55] M. Gallo and R. Laufer, “Clicknf: A modular stack for custom net-
work functions,” in Proc. USENIX Annu. Tech. Conf., 2018.

[56] T. Brecht, D. Pariag, and L. Gammo, “Acceptable strategies for
improving web server performance,” in Proc. Annual Conf. USE-
NIX Annu. Tech. Conf., 2004, pp. 20–20.

[57] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An argument for increasing tcp’s initial
congestion window,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 3, pp. 26–33, Jun. 2010.

[58] S. S. Prakash and B. C. Kovoor, “Performance optimisation of web
applications using in-memory caching and asynchronous job
queues,” in Proc. Int. Conf. Inventive Comput. Technol., 2016, vol. 3,
pp. 1–5.

[59] A. Aytekin, H. R. Feyzmahdavian, and M. Johansson, “Analysis
and implementation of an asynchronous optimization algorithm
for the parameter server,” arXiv preprint, 2016. [Online]. Available:
https://arxiv.org/abs/1610.05507

[60] J. Davis, A. Thekumparampil, and D. Lee, “Node.fz: Fuzzing the
server-side event-driven architecture,” in Proc. 12th Eur. Conf.
Comput. Syst., 2017, pp. 145–160.

[61] J. Davis, G. Kildow, and D. Lee, “The case of the poisoned event
handler: Weaknesses in the node.js event-driven architecture,” in
Proc. 10th Eur. Workshop Syst. Secur., 2017, pp. 8:1–8:6.

Shungeng Zhang received the BS degree from
HuaZhong University of Science & Technology in
China, in 2014. He is working toward the PhD
degree in the Department of EECS, Louisiana
State University-Baton Rouge. He is currently
working in the cloud computing lab as a research
assistant. His research interest include perfor-
mance and scalability analysis of internet server
architecture, aiming to achieve responsive web
applications running in the cloud. He is a student
member of the IEEE.

Qingyang Wang received the BSc and MSc
degrees from Chinese Academy of Sciences and
Wuhan University, in 2004 and 2007 and the PhD
degree in computer science from Georgia Tech,
in 2014. He is an assistant professor with the
Department of EECS, Louisiana State University-
Baton Rouge. His research is in distributed sys-
tems and cloud computing with a current focus
on performance and scalability analysis of large-
scale web applications (e.g., Amazon.com). He
has led research projects with LSU on cloud per-

formance measurements, scalable web application design, and auto-
mated system management in clouds. He is a member of the IEEE.

Yasuhiko Kanemasa received the BEng degree
in computer engineering from Tokyo Institute of
Technology, Tokyo, Japan, in 1996, and the MS
degree in computer science from Japan Advanced
Institute of Science and Technology, Nomi,
Japan, in 1998. He has been working with Fujitsu
Laboratories Ltd., Kawasaki, Japan since 1998
and is in the position of research manager cur-
rently. His research interests include data proc-
essing systems, application performance
management, and cloud computing. He is a mem-
ber of the IEEE, IPSJ, and DBSJ.

Huasong Shan received the PhD degree in com-
puter engineering from Louisiana State Univer-
sity-Baton Rouge, in 2017. He received the MS
and BS degree in computer science and technol-
ogy, Huazhong University of Science and Tech-
nology, China, in 2003 and 2006, respectively.
He has been working with JD.com American
Technologies Corporation, Mountain View, Cali-
fornia as staff scientist. His research interests
include distributed system, application of AI on
system and security, cloud computing, storage
system etc. He is a student member of the IEEE.

Liting Hu received the BSc degree in computer
science from Huazhong University of Science
and Technology, in China and the PhD degree in
computer science from Georgia Institute of Tech-
nology. Her research is in the general area of dis-
tributed systems and its intersection with big data
analytics, resource management, power man-
agement, and system virtualization. She interned
with IBM T.J. Watson Research Center, Intel Sci-
ence and Technology Center for Cloud Comput-
ing, Microsoft Research Asia, VMware, and has
been working closely with them. She is a member
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: THE IMPACT OF EVENT PROCESSING FLOW ON ASYNCHRONOUS SERVER EFFICIENCY 579

https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SocketChann el.html#write(java.nio.ByteBuffer)
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SocketChann el.html#write(java.nio.ByteBuffer)
http://man7.org/linux/man-pages/man2/send.2.html
https://tools.ietf.org/html/rfc7540
http://www.ietf.org/rfc/rfc6349.txt
http://lib-www.lanl.gov/la-pubs/00796247.pdf
http://lib-www.lanl.gov/la-pubs/00796247.pdf
https://tools.ietf.org/html/rfc2581
https://tools.ietf.org/html/rfc2581
https://www.android.com/
https://developer.android.com/reference/java/net/SocketOptions/
https://developer.android.com/reference/java/net/SocketOptions/
https://redis.io/
https://devcentral.f5.com/s/articles/the-send-buffer-in-depth-21845
https://devcentral.f5.com/s/articles/the-send-buffer-in-depth-21845
https://arxiv.org/abs/1610.05507

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

